Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr4
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr4.1
|- ( ph <-> ze )
mdandyvr4.2
|- ( ps <-> si )
mdandyvr4.3
|- ( ch <-> ph )
mdandyvr4.4
|- ( th <-> ph )
mdandyvr4.5
|- ( ta <-> ps )
mdandyvr4.6
|- ( et <-> ph )
Assertion
mdandyvr4
|- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvr4.1
|- ( ph <-> ze )
2
mdandyvr4.2
|- ( ps <-> si )
3
mdandyvr4.3
|- ( ch <-> ph )
4
mdandyvr4.4
|- ( th <-> ph )
5
mdandyvr4.5
|- ( ta <-> ps )
6
mdandyvr4.6
|- ( et <-> ph )
7
3 1
bitri
|- ( ch <-> ze )
8
4 1
bitri
|- ( th <-> ze )
9
7 8
pm3.2i
|- ( ( ch <-> ze ) /\ ( th <-> ze ) )
10
5 2
bitri
|- ( ta <-> si )
11
9 10
pm3.2i
|- ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) )
12
6 1
bitri
|- ( et <-> ze )
13
11 12
pm3.2i
|- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )