Metamath Proof Explorer


Theorem mdandyvr7

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr7.1
|- ( ph <-> ze )
mdandyvr7.2
|- ( ps <-> si )
mdandyvr7.3
|- ( ch <-> ps )
mdandyvr7.4
|- ( th <-> ps )
mdandyvr7.5
|- ( ta <-> ps )
mdandyvr7.6
|- ( et <-> ph )
Assertion mdandyvr7
|- ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )

Proof

Step Hyp Ref Expression
1 mdandyvr7.1
 |-  ( ph <-> ze )
2 mdandyvr7.2
 |-  ( ps <-> si )
3 mdandyvr7.3
 |-  ( ch <-> ps )
4 mdandyvr7.4
 |-  ( th <-> ps )
5 mdandyvr7.5
 |-  ( ta <-> ps )
6 mdandyvr7.6
 |-  ( et <-> ph )
7 3 2 bitri
 |-  ( ch <-> si )
8 4 2 bitri
 |-  ( th <-> si )
9 7 8 pm3.2i
 |-  ( ( ch <-> si ) /\ ( th <-> si ) )
10 5 2 bitri
 |-  ( ta <-> si )
11 9 10 pm3.2i
 |-  ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) )
12 6 1 bitri
 |-  ( et <-> ze )
13 11 12 pm3.2i
 |-  ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> ze ) )