Metamath Proof Explorer


Theorem mdandyvrx10

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx10.1
|- ( ph \/_ ze )
mdandyvrx10.2
|- ( ps \/_ si )
mdandyvrx10.3
|- ( ch <-> ph )
mdandyvrx10.4
|- ( th <-> ps )
mdandyvrx10.5
|- ( ta <-> ph )
mdandyvrx10.6
|- ( et <-> ps )
Assertion mdandyvrx10
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ si ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx10.1
 |-  ( ph \/_ ze )
2 mdandyvrx10.2
 |-  ( ps \/_ si )
3 mdandyvrx10.3
 |-  ( ch <-> ph )
4 mdandyvrx10.4
 |-  ( th <-> ps )
5 mdandyvrx10.5
 |-  ( ta <-> ph )
6 mdandyvrx10.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvrx5
 |-  ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ si ) )