Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx10
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx10.1
|- ( ph \/_ ze )
mdandyvrx10.2
|- ( ps \/_ si )
mdandyvrx10.3
|- ( ch <-> ph )
mdandyvrx10.4
|- ( th <-> ps )
mdandyvrx10.5
|- ( ta <-> ph )
mdandyvrx10.6
|- ( et <-> ps )
Assertion
mdandyvrx10
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ si ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx10.1
|- ( ph \/_ ze )
2
mdandyvrx10.2
|- ( ps \/_ si )
3
mdandyvrx10.3
|- ( ch <-> ph )
4
mdandyvrx10.4
|- ( th <-> ps )
5
mdandyvrx10.5
|- ( ta <-> ph )
6
mdandyvrx10.6
|- ( et <-> ps )
7
2 1 3 4 5 6
mdandyvrx5
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ ze ) ) /\ ( et \/_ si ) )