Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx12
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx12.1
|- ( ph \/_ ze )
mdandyvrx12.2
|- ( ps \/_ si )
mdandyvrx12.3
|- ( ch <-> ph )
mdandyvrx12.4
|- ( th <-> ph )
mdandyvrx12.5
|- ( ta <-> ps )
mdandyvrx12.6
|- ( et <-> ps )
Assertion
mdandyvrx12
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx12.1
|- ( ph \/_ ze )
2
mdandyvrx12.2
|- ( ps \/_ si )
3
mdandyvrx12.3
|- ( ch <-> ph )
4
mdandyvrx12.4
|- ( th <-> ph )
5
mdandyvrx12.5
|- ( ta <-> ps )
6
mdandyvrx12.6
|- ( et <-> ps )
7
2 1 3 4 5 6
mdandyvrx3
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )