Metamath Proof Explorer


Theorem mdandyvrx12

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx12.1
|- ( ph \/_ ze )
mdandyvrx12.2
|- ( ps \/_ si )
mdandyvrx12.3
|- ( ch <-> ph )
mdandyvrx12.4
|- ( th <-> ph )
mdandyvrx12.5
|- ( ta <-> ps )
mdandyvrx12.6
|- ( et <-> ps )
Assertion mdandyvrx12
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx12.1
 |-  ( ph \/_ ze )
2 mdandyvrx12.2
 |-  ( ps \/_ si )
3 mdandyvrx12.3
 |-  ( ch <-> ph )
4 mdandyvrx12.4
 |-  ( th <-> ph )
5 mdandyvrx12.5
 |-  ( ta <-> ps )
6 mdandyvrx12.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvrx3
 |-  ( ( ( ( ch \/_ ze ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )