Metamath Proof Explorer


Theorem mdandyvrx13

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx13.1
|- ( ph \/_ ze )
mdandyvrx13.2
|- ( ps \/_ si )
mdandyvrx13.3
|- ( ch <-> ps )
mdandyvrx13.4
|- ( th <-> ph )
mdandyvrx13.5
|- ( ta <-> ps )
mdandyvrx13.6
|- ( et <-> ps )
Assertion mdandyvrx13
|- ( ( ( ( ch \/_ si ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx13.1
 |-  ( ph \/_ ze )
2 mdandyvrx13.2
 |-  ( ps \/_ si )
3 mdandyvrx13.3
 |-  ( ch <-> ps )
4 mdandyvrx13.4
 |-  ( th <-> ph )
5 mdandyvrx13.5
 |-  ( ta <-> ps )
6 mdandyvrx13.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvrx2
 |-  ( ( ( ( ch \/_ si ) /\ ( th \/_ ze ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )