Metamath Proof Explorer


Theorem mdandyvrx14

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx14.1
|- ( ph \/_ ze )
mdandyvrx14.2
|- ( ps \/_ si )
mdandyvrx14.3
|- ( ch <-> ph )
mdandyvrx14.4
|- ( th <-> ps )
mdandyvrx14.5
|- ( ta <-> ps )
mdandyvrx14.6
|- ( et <-> ps )
Assertion mdandyvrx14
|- ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )

Proof

Step Hyp Ref Expression
1 mdandyvrx14.1
 |-  ( ph \/_ ze )
2 mdandyvrx14.2
 |-  ( ps \/_ si )
3 mdandyvrx14.3
 |-  ( ch <-> ph )
4 mdandyvrx14.4
 |-  ( th <-> ps )
5 mdandyvrx14.5
 |-  ( ta <-> ps )
6 mdandyvrx14.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvrx1
 |-  ( ( ( ( ch \/_ ze ) /\ ( th \/_ si ) ) /\ ( ta \/_ si ) ) /\ ( et \/_ si ) )