Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( y = A -> ( y e. CH <-> A e. CH ) ) |
2 |
1
|
anbi1d |
|- ( y = A -> ( ( y e. CH /\ z e. CH ) <-> ( A e. CH /\ z e. CH ) ) ) |
3 |
|
oveq2 |
|- ( y = A -> ( x vH y ) = ( x vH A ) ) |
4 |
3
|
ineq1d |
|- ( y = A -> ( ( x vH y ) i^i z ) = ( ( x vH A ) i^i z ) ) |
5 |
|
ineq1 |
|- ( y = A -> ( y i^i z ) = ( A i^i z ) ) |
6 |
5
|
oveq2d |
|- ( y = A -> ( x vH ( y i^i z ) ) = ( x vH ( A i^i z ) ) ) |
7 |
4 6
|
eqeq12d |
|- ( y = A -> ( ( ( x vH y ) i^i z ) = ( x vH ( y i^i z ) ) <-> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) ) |
8 |
7
|
imbi2d |
|- ( y = A -> ( ( x C_ z -> ( ( x vH y ) i^i z ) = ( x vH ( y i^i z ) ) ) <-> ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) ) ) |
9 |
8
|
ralbidv |
|- ( y = A -> ( A. x e. CH ( x C_ z -> ( ( x vH y ) i^i z ) = ( x vH ( y i^i z ) ) ) <-> A. x e. CH ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) ) ) |
10 |
2 9
|
anbi12d |
|- ( y = A -> ( ( ( y e. CH /\ z e. CH ) /\ A. x e. CH ( x C_ z -> ( ( x vH y ) i^i z ) = ( x vH ( y i^i z ) ) ) ) <-> ( ( A e. CH /\ z e. CH ) /\ A. x e. CH ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) ) ) ) |
11 |
|
eleq1 |
|- ( z = B -> ( z e. CH <-> B e. CH ) ) |
12 |
11
|
anbi2d |
|- ( z = B -> ( ( A e. CH /\ z e. CH ) <-> ( A e. CH /\ B e. CH ) ) ) |
13 |
|
sseq2 |
|- ( z = B -> ( x C_ z <-> x C_ B ) ) |
14 |
|
ineq2 |
|- ( z = B -> ( ( x vH A ) i^i z ) = ( ( x vH A ) i^i B ) ) |
15 |
|
ineq2 |
|- ( z = B -> ( A i^i z ) = ( A i^i B ) ) |
16 |
15
|
oveq2d |
|- ( z = B -> ( x vH ( A i^i z ) ) = ( x vH ( A i^i B ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( z = B -> ( ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) <-> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
18 |
13 17
|
imbi12d |
|- ( z = B -> ( ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) <-> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
19 |
18
|
ralbidv |
|- ( z = B -> ( A. x e. CH ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
20 |
12 19
|
anbi12d |
|- ( z = B -> ( ( ( A e. CH /\ z e. CH ) /\ A. x e. CH ( x C_ z -> ( ( x vH A ) i^i z ) = ( x vH ( A i^i z ) ) ) ) <-> ( ( A e. CH /\ B e. CH ) /\ A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) ) |
21 |
|
df-md |
|- MH = { <. y , z >. | ( ( y e. CH /\ z e. CH ) /\ A. x e. CH ( x C_ z -> ( ( x vH y ) i^i z ) = ( x vH ( y i^i z ) ) ) ) } |
22 |
10 20 21
|
brabg |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( ( A e. CH /\ B e. CH ) /\ A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) ) |
23 |
22
|
bianabs |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |