Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
2 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
3 |
|
dmdmd |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH* ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` A ) ) MH ( _|_ ` ( _|_ ` B ) ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH* ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` A ) ) MH ( _|_ ` ( _|_ ` B ) ) ) ) |
5 |
|
ococ |
|- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |
6 |
|
ococ |
|- ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B ) |
7 |
5 6
|
breqan12d |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` A ) ) MH ( _|_ ` ( _|_ ` B ) ) <-> A MH B ) ) |
8 |
4 7
|
bitr2d |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) ) |