Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
3 |
|
mdegval.b |
|- B = ( Base ` P ) |
4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
7 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = ( I mPoly R ) ) |
8 |
7 2
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = P ) |
9 |
8
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = ( Base ` P ) ) |
10 |
9 3
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = B ) |
11 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
12 |
11 4
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
13 |
12
|
oveq2d |
|- ( r = R -> ( f supp ( 0g ` r ) ) = ( f supp .0. ) ) |
14 |
13
|
mpteq1d |
|- ( r = R -> ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) = ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
15 |
14
|
rneqd |
|- ( r = R -> ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) = ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
16 |
15
|
supeq1d |
|- ( r = R -> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) |
17 |
16
|
adantl |
|- ( ( i = I /\ r = R ) -> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) |
18 |
10 17
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( i mPoly r ) ) |-> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) ) = ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
19 |
|
df-mdeg |
|- mDeg = ( i e. _V , r e. _V |-> ( f e. ( Base ` ( i mPoly r ) ) |-> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
20 |
3
|
fvexi |
|- B e. _V |
21 |
20
|
mptex |
|- ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) e. _V |
22 |
18 19 21
|
ovmpoa |
|- ( ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
23 |
6
|
reseq1i |
|- ( H |` ( f supp .0. ) ) = ( ( h e. A |-> ( CCfld gsum h ) ) |` ( f supp .0. ) ) |
24 |
|
suppssdm |
|- ( f supp .0. ) C_ dom f |
25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
26 |
|
simpr |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> f e. B ) |
27 |
2 25 3 5 26
|
mplelf |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> f : A --> ( Base ` R ) ) |
28 |
24 27
|
fssdm |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( f supp .0. ) C_ A ) |
29 |
28
|
resmptd |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( ( h e. A |-> ( CCfld gsum h ) ) |` ( f supp .0. ) ) = ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
30 |
23 29
|
eqtr2id |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ( H |` ( f supp .0. ) ) ) |
31 |
30
|
rneqd |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ran ( H |` ( f supp .0. ) ) ) |
32 |
|
df-ima |
|- ( H " ( f supp .0. ) ) = ran ( H |` ( f supp .0. ) ) |
33 |
31 32
|
eqtr4di |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ( H " ( f supp .0. ) ) ) |
34 |
33
|
supeq1d |
|- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
35 |
34
|
mpteq2dva |
|- ( ( I e. _V /\ R e. _V ) -> ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
36 |
22 35
|
eqtrd |
|- ( ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
37 |
|
reldmmdeg |
|- Rel dom mDeg |
38 |
37
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = (/) ) |
39 |
|
mpt0 |
|- ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) = (/) |
40 |
38 39
|
eqtr4di |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
41 |
|
reldmmpl |
|- Rel dom mPoly |
42 |
41
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = (/) ) |
43 |
2 42
|
syl5eq |
|- ( -. ( I e. _V /\ R e. _V ) -> P = (/) ) |
44 |
43
|
fveq2d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( Base ` P ) = ( Base ` (/) ) ) |
45 |
|
base0 |
|- (/) = ( Base ` (/) ) |
46 |
44 3 45
|
3eqtr4g |
|- ( -. ( I e. _V /\ R e. _V ) -> B = (/) ) |
47 |
46
|
mpteq1d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) = ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
48 |
40 47
|
eqtr4d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
49 |
36 48
|
pm2.61i |
|- ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
50 |
1 49
|
eqtri |
|- D = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |