Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
3 |
|
mdegval.b |
|- B = ( Base ` P ) |
4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
7 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
8 |
7
|
adantr |
|- ( ( F e. B /\ G e. RR* ) -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
9 |
8
|
breq1d |
|- ( ( F e. B /\ G e. RR* ) -> ( ( D ` F ) <_ G <-> sup ( ( H " ( F supp .0. ) ) , RR* , < ) <_ G ) ) |
10 |
|
imassrn |
|- ( H " ( F supp .0. ) ) C_ ran H |
11 |
5 6
|
tdeglem1 |
|- H : A --> NN0 |
12 |
11
|
a1i |
|- ( ( F e. B /\ G e. RR* ) -> H : A --> NN0 ) |
13 |
12
|
frnd |
|- ( ( F e. B /\ G e. RR* ) -> ran H C_ NN0 ) |
14 |
|
nn0ssre |
|- NN0 C_ RR |
15 |
|
ressxr |
|- RR C_ RR* |
16 |
14 15
|
sstri |
|- NN0 C_ RR* |
17 |
13 16
|
sstrdi |
|- ( ( F e. B /\ G e. RR* ) -> ran H C_ RR* ) |
18 |
10 17
|
sstrid |
|- ( ( F e. B /\ G e. RR* ) -> ( H " ( F supp .0. ) ) C_ RR* ) |
19 |
|
supxrleub |
|- ( ( ( H " ( F supp .0. ) ) C_ RR* /\ G e. RR* ) -> ( sup ( ( H " ( F supp .0. ) ) , RR* , < ) <_ G <-> A. y e. ( H " ( F supp .0. ) ) y <_ G ) ) |
20 |
18 19
|
sylancom |
|- ( ( F e. B /\ G e. RR* ) -> ( sup ( ( H " ( F supp .0. ) ) , RR* , < ) <_ G <-> A. y e. ( H " ( F supp .0. ) ) y <_ G ) ) |
21 |
12
|
ffnd |
|- ( ( F e. B /\ G e. RR* ) -> H Fn A ) |
22 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
|
simpl |
|- ( ( F e. B /\ G e. RR* ) -> F e. B ) |
25 |
2 23 3 5 24
|
mplelf |
|- ( ( F e. B /\ G e. RR* ) -> F : A --> ( Base ` R ) ) |
26 |
22 25
|
fssdm |
|- ( ( F e. B /\ G e. RR* ) -> ( F supp .0. ) C_ A ) |
27 |
|
breq1 |
|- ( y = ( H ` x ) -> ( y <_ G <-> ( H ` x ) <_ G ) ) |
28 |
27
|
ralima |
|- ( ( H Fn A /\ ( F supp .0. ) C_ A ) -> ( A. y e. ( H " ( F supp .0. ) ) y <_ G <-> A. x e. ( F supp .0. ) ( H ` x ) <_ G ) ) |
29 |
21 26 28
|
syl2anc |
|- ( ( F e. B /\ G e. RR* ) -> ( A. y e. ( H " ( F supp .0. ) ) y <_ G <-> A. x e. ( F supp .0. ) ( H ` x ) <_ G ) ) |
30 |
25
|
ffnd |
|- ( ( F e. B /\ G e. RR* ) -> F Fn A ) |
31 |
4
|
fvexi |
|- .0. e. _V |
32 |
31
|
a1i |
|- ( ( F e. B /\ G e. RR* ) -> .0. e. _V ) |
33 |
|
elsuppfng |
|- ( ( F Fn A /\ F e. B /\ .0. e. _V ) -> ( x e. ( F supp .0. ) <-> ( x e. A /\ ( F ` x ) =/= .0. ) ) ) |
34 |
30 24 32 33
|
syl3anc |
|- ( ( F e. B /\ G e. RR* ) -> ( x e. ( F supp .0. ) <-> ( x e. A /\ ( F ` x ) =/= .0. ) ) ) |
35 |
|
fvex |
|- ( F ` x ) e. _V |
36 |
35
|
biantrur |
|- ( ( F ` x ) =/= .0. <-> ( ( F ` x ) e. _V /\ ( F ` x ) =/= .0. ) ) |
37 |
|
eldifsn |
|- ( ( F ` x ) e. ( _V \ { .0. } ) <-> ( ( F ` x ) e. _V /\ ( F ` x ) =/= .0. ) ) |
38 |
36 37
|
bitr4i |
|- ( ( F ` x ) =/= .0. <-> ( F ` x ) e. ( _V \ { .0. } ) ) |
39 |
38
|
anbi2i |
|- ( ( x e. A /\ ( F ` x ) =/= .0. ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { .0. } ) ) ) |
40 |
34 39
|
bitrdi |
|- ( ( F e. B /\ G e. RR* ) -> ( x e. ( F supp .0. ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { .0. } ) ) ) ) |
41 |
40
|
imbi1d |
|- ( ( F e. B /\ G e. RR* ) -> ( ( x e. ( F supp .0. ) -> ( H ` x ) <_ G ) <-> ( ( x e. A /\ ( F ` x ) e. ( _V \ { .0. } ) ) -> ( H ` x ) <_ G ) ) ) |
42 |
|
impexp |
|- ( ( ( x e. A /\ ( F ` x ) e. ( _V \ { .0. } ) ) -> ( H ` x ) <_ G ) <-> ( x e. A -> ( ( F ` x ) e. ( _V \ { .0. } ) -> ( H ` x ) <_ G ) ) ) |
43 |
|
con34b |
|- ( ( ( F ` x ) e. ( _V \ { .0. } ) -> ( H ` x ) <_ G ) <-> ( -. ( H ` x ) <_ G -> -. ( F ` x ) e. ( _V \ { .0. } ) ) ) |
44 |
|
simplr |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> G e. RR* ) |
45 |
12
|
ffvelrnda |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( H ` x ) e. NN0 ) |
46 |
16 45
|
sselid |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( H ` x ) e. RR* ) |
47 |
|
xrltnle |
|- ( ( G e. RR* /\ ( H ` x ) e. RR* ) -> ( G < ( H ` x ) <-> -. ( H ` x ) <_ G ) ) |
48 |
44 46 47
|
syl2anc |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( G < ( H ` x ) <-> -. ( H ` x ) <_ G ) ) |
49 |
48
|
bicomd |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( -. ( H ` x ) <_ G <-> G < ( H ` x ) ) ) |
50 |
|
ianor |
|- ( -. ( ( F ` x ) e. _V /\ ( F ` x ) =/= .0. ) <-> ( -. ( F ` x ) e. _V \/ -. ( F ` x ) =/= .0. ) ) |
51 |
50 37
|
xchnxbir |
|- ( -. ( F ` x ) e. ( _V \ { .0. } ) <-> ( -. ( F ` x ) e. _V \/ -. ( F ` x ) =/= .0. ) ) |
52 |
|
orcom |
|- ( ( -. ( F ` x ) e. _V \/ -. ( F ` x ) =/= .0. ) <-> ( -. ( F ` x ) =/= .0. \/ -. ( F ` x ) e. _V ) ) |
53 |
35
|
notnoti |
|- -. -. ( F ` x ) e. _V |
54 |
53
|
biorfi |
|- ( -. ( F ` x ) =/= .0. <-> ( -. ( F ` x ) =/= .0. \/ -. ( F ` x ) e. _V ) ) |
55 |
|
nne |
|- ( -. ( F ` x ) =/= .0. <-> ( F ` x ) = .0. ) |
56 |
52 54 55
|
3bitr2i |
|- ( ( -. ( F ` x ) e. _V \/ -. ( F ` x ) =/= .0. ) <-> ( F ` x ) = .0. ) |
57 |
56
|
a1i |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( ( -. ( F ` x ) e. _V \/ -. ( F ` x ) =/= .0. ) <-> ( F ` x ) = .0. ) ) |
58 |
51 57
|
syl5bb |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( -. ( F ` x ) e. ( _V \ { .0. } ) <-> ( F ` x ) = .0. ) ) |
59 |
49 58
|
imbi12d |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( ( -. ( H ` x ) <_ G -> -. ( F ` x ) e. ( _V \ { .0. } ) ) <-> ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
60 |
43 59
|
syl5bb |
|- ( ( ( F e. B /\ G e. RR* ) /\ x e. A ) -> ( ( ( F ` x ) e. ( _V \ { .0. } ) -> ( H ` x ) <_ G ) <-> ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
61 |
60
|
pm5.74da |
|- ( ( F e. B /\ G e. RR* ) -> ( ( x e. A -> ( ( F ` x ) e. ( _V \ { .0. } ) -> ( H ` x ) <_ G ) ) <-> ( x e. A -> ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) ) |
62 |
42 61
|
syl5bb |
|- ( ( F e. B /\ G e. RR* ) -> ( ( ( x e. A /\ ( F ` x ) e. ( _V \ { .0. } ) ) -> ( H ` x ) <_ G ) <-> ( x e. A -> ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) ) |
63 |
41 62
|
bitrd |
|- ( ( F e. B /\ G e. RR* ) -> ( ( x e. ( F supp .0. ) -> ( H ` x ) <_ G ) <-> ( x e. A -> ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) ) |
64 |
63
|
ralbidv2 |
|- ( ( F e. B /\ G e. RR* ) -> ( A. x e. ( F supp .0. ) ( H ` x ) <_ G <-> A. x e. A ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
65 |
29 64
|
bitrd |
|- ( ( F e. B /\ G e. RR* ) -> ( A. y e. ( H " ( F supp .0. ) ) y <_ G <-> A. x e. A ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
66 |
9 20 65
|
3bitrd |
|- ( ( F e. B /\ G e. RR* ) -> ( ( D ` F ) <_ G <-> A. x e. A ( G < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |