| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
| 2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
| 3 |
|
mdegval.b |
|- B = ( Base ` P ) |
| 4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
| 6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
| 7 |
|
mdeglt.f |
|- ( ph -> F e. B ) |
| 8 |
|
medglt.x |
|- ( ph -> X e. A ) |
| 9 |
|
mdeglt.lt |
|- ( ph -> ( D ` F ) < ( H ` X ) ) |
| 10 |
|
fveq2 |
|- ( x = X -> ( H ` x ) = ( H ` X ) ) |
| 11 |
10
|
breq2d |
|- ( x = X -> ( ( D ` F ) < ( H ` x ) <-> ( D ` F ) < ( H ` X ) ) ) |
| 12 |
|
fveqeq2 |
|- ( x = X -> ( ( F ` x ) = .0. <-> ( F ` X ) = .0. ) ) |
| 13 |
11 12
|
imbi12d |
|- ( x = X -> ( ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) <-> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) ) |
| 14 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
| 15 |
7 14
|
syl |
|- ( ph -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
| 16 |
|
imassrn |
|- ( H " ( F supp .0. ) ) C_ ran H |
| 17 |
5 6
|
tdeglem1 |
|- H : A --> NN0 |
| 18 |
|
frn |
|- ( H : A --> NN0 -> ran H C_ NN0 ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> ran H C_ NN0 ) |
| 20 |
|
nn0ssre |
|- NN0 C_ RR |
| 21 |
|
ressxr |
|- RR C_ RR* |
| 22 |
20 21
|
sstri |
|- NN0 C_ RR* |
| 23 |
19 22
|
sstrdi |
|- ( ph -> ran H C_ RR* ) |
| 24 |
16 23
|
sstrid |
|- ( ph -> ( H " ( F supp .0. ) ) C_ RR* ) |
| 25 |
|
supxrcl |
|- ( ( H " ( F supp .0. ) ) C_ RR* -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) |
| 26 |
24 25
|
syl |
|- ( ph -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) |
| 27 |
15 26
|
eqeltrd |
|- ( ph -> ( D ` F ) e. RR* ) |
| 28 |
27
|
xrleidd |
|- ( ph -> ( D ` F ) <_ ( D ` F ) ) |
| 29 |
1 2 3 4 5 6
|
mdegleb |
|- ( ( F e. B /\ ( D ` F ) e. RR* ) -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
| 30 |
7 27 29
|
syl2anc |
|- ( ph -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
| 31 |
28 30
|
mpbid |
|- ( ph -> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) |
| 32 |
13 31 8
|
rspcdva |
|- ( ph -> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) |
| 33 |
9 32
|
mpd |
|- ( ph -> ( F ` X ) = .0. ) |