Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
3 |
|
mdegval.b |
|- B = ( Base ` P ) |
4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
7 |
|
mdeglt.f |
|- ( ph -> F e. B ) |
8 |
|
medglt.x |
|- ( ph -> X e. A ) |
9 |
|
mdeglt.lt |
|- ( ph -> ( D ` F ) < ( H ` X ) ) |
10 |
|
fveq2 |
|- ( x = X -> ( H ` x ) = ( H ` X ) ) |
11 |
10
|
breq2d |
|- ( x = X -> ( ( D ` F ) < ( H ` x ) <-> ( D ` F ) < ( H ` X ) ) ) |
12 |
|
fveqeq2 |
|- ( x = X -> ( ( F ` x ) = .0. <-> ( F ` X ) = .0. ) ) |
13 |
11 12
|
imbi12d |
|- ( x = X -> ( ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) <-> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) ) |
14 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
15 |
7 14
|
syl |
|- ( ph -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
16 |
|
imassrn |
|- ( H " ( F supp .0. ) ) C_ ran H |
17 |
5 6
|
tdeglem1 |
|- H : A --> NN0 |
18 |
|
frn |
|- ( H : A --> NN0 -> ran H C_ NN0 ) |
19 |
17 18
|
mp1i |
|- ( ph -> ran H C_ NN0 ) |
20 |
|
nn0ssre |
|- NN0 C_ RR |
21 |
|
ressxr |
|- RR C_ RR* |
22 |
20 21
|
sstri |
|- NN0 C_ RR* |
23 |
19 22
|
sstrdi |
|- ( ph -> ran H C_ RR* ) |
24 |
16 23
|
sstrid |
|- ( ph -> ( H " ( F supp .0. ) ) C_ RR* ) |
25 |
|
supxrcl |
|- ( ( H " ( F supp .0. ) ) C_ RR* -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) |
26 |
24 25
|
syl |
|- ( ph -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) |
27 |
15 26
|
eqeltrd |
|- ( ph -> ( D ` F ) e. RR* ) |
28 |
27
|
xrleidd |
|- ( ph -> ( D ` F ) <_ ( D ` F ) ) |
29 |
1 2 3 4 5 6
|
mdegleb |
|- ( ( F e. B /\ ( D ` F ) e. RR* ) -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
30 |
7 27 29
|
syl2anc |
|- ( ph -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) |
31 |
28 30
|
mpbid |
|- ( ph -> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) |
32 |
13 31 8
|
rspcdva |
|- ( ph -> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) |
33 |
9 32
|
mpd |
|- ( ph -> ( F ` X ) = .0. ) |