Description: The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdegaddle.y | |- Y = ( I mPoly R ) |
|
mdegaddle.d | |- D = ( I mDeg R ) |
||
mdegaddle.i | |- ( ph -> I e. V ) |
||
mdegaddle.r | |- ( ph -> R e. Ring ) |
||
mdegmulle2.b | |- B = ( Base ` Y ) |
||
mdegmulle2.t | |- .x. = ( .r ` Y ) |
||
mdegmulle2.f | |- ( ph -> F e. B ) |
||
mdegmulle2.g | |- ( ph -> G e. B ) |
||
mdegmulle2.j1 | |- ( ph -> J e. NN0 ) |
||
mdegmulle2.k1 | |- ( ph -> K e. NN0 ) |
||
mdegmulle2.j2 | |- ( ph -> ( D ` F ) <_ J ) |
||
mdegmulle2.k2 | |- ( ph -> ( D ` G ) <_ K ) |
||
Assertion | mdegmulle2 | |- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | |- Y = ( I mPoly R ) |
|
2 | mdegaddle.d | |- D = ( I mDeg R ) |
|
3 | mdegaddle.i | |- ( ph -> I e. V ) |
|
4 | mdegaddle.r | |- ( ph -> R e. Ring ) |
|
5 | mdegmulle2.b | |- B = ( Base ` Y ) |
|
6 | mdegmulle2.t | |- .x. = ( .r ` Y ) |
|
7 | mdegmulle2.f | |- ( ph -> F e. B ) |
|
8 | mdegmulle2.g | |- ( ph -> G e. B ) |
|
9 | mdegmulle2.j1 | |- ( ph -> J e. NN0 ) |
|
10 | mdegmulle2.k1 | |- ( ph -> K e. NN0 ) |
|
11 | mdegmulle2.j2 | |- ( ph -> ( D ` F ) <_ J ) |
|
12 | mdegmulle2.k2 | |- ( ph -> ( D ` G ) <_ K ) |
|
13 | eqid | |- { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |
|
14 | eqid | |- ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) = ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) |
|
15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mdegmullem | |- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) ) |