Metamath Proof Explorer


Theorem mdegmulle2

Description: The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y
|- Y = ( I mPoly R )
mdegaddle.d
|- D = ( I mDeg R )
mdegaddle.i
|- ( ph -> I e. V )
mdegaddle.r
|- ( ph -> R e. Ring )
mdegmulle2.b
|- B = ( Base ` Y )
mdegmulle2.t
|- .x. = ( .r ` Y )
mdegmulle2.f
|- ( ph -> F e. B )
mdegmulle2.g
|- ( ph -> G e. B )
mdegmulle2.j1
|- ( ph -> J e. NN0 )
mdegmulle2.k1
|- ( ph -> K e. NN0 )
mdegmulle2.j2
|- ( ph -> ( D ` F ) <_ J )
mdegmulle2.k2
|- ( ph -> ( D ` G ) <_ K )
Assertion mdegmulle2
|- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) )

Proof

Step Hyp Ref Expression
1 mdegaddle.y
 |-  Y = ( I mPoly R )
2 mdegaddle.d
 |-  D = ( I mDeg R )
3 mdegaddle.i
 |-  ( ph -> I e. V )
4 mdegaddle.r
 |-  ( ph -> R e. Ring )
5 mdegmulle2.b
 |-  B = ( Base ` Y )
6 mdegmulle2.t
 |-  .x. = ( .r ` Y )
7 mdegmulle2.f
 |-  ( ph -> F e. B )
8 mdegmulle2.g
 |-  ( ph -> G e. B )
9 mdegmulle2.j1
 |-  ( ph -> J e. NN0 )
10 mdegmulle2.k1
 |-  ( ph -> K e. NN0 )
11 mdegmulle2.j2
 |-  ( ph -> ( D ` F ) <_ J )
12 mdegmulle2.k2
 |-  ( ph -> ( D ` G ) <_ K )
13 eqid
 |-  { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin }
14 eqid
 |-  ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) = ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mdegmullem
 |-  ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) )