Step |
Hyp |
Ref |
Expression |
1 |
|
mdeg0.d |
|- D = ( I mDeg R ) |
2 |
|
mdeg0.p |
|- P = ( I mPoly R ) |
3 |
|
mdeg0.z |
|- .0. = ( 0g ` P ) |
4 |
|
mdegnn0cl.b |
|- B = ( Base ` P ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
|
eqid |
|- { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
7 |
|
eqid |
|- ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) = ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) |
8 |
1 2 4 5 6 7 3
|
mdegldg |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> E. x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) ) |
9 |
6 7
|
tdeglem1 |
|- ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) : { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } --> NN0 |
10 |
9
|
a1i |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) : { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } --> NN0 ) |
11 |
10
|
ffvelrnda |
|- ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) e. NN0 ) |
12 |
|
eleq1 |
|- ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) -> ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) e. NN0 <-> ( D ` F ) e. NN0 ) ) |
13 |
11 12
|
syl5ibcom |
|- ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) -> ( D ` F ) e. NN0 ) ) |
14 |
13
|
adantld |
|- ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) -> ( D ` F ) e. NN0 ) ) |
15 |
14
|
rexlimdva |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( E. x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) -> ( D ` F ) e. NN0 ) ) |
16 |
8 15
|
mpd |
|- ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |