| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdeg0.d |  |-  D = ( I mDeg R ) | 
						
							| 2 |  | mdeg0.p |  |-  P = ( I mPoly R ) | 
						
							| 3 |  | mdeg0.z |  |-  .0. = ( 0g ` P ) | 
						
							| 4 |  | mdegnn0cl.b |  |-  B = ( Base ` P ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 6 |  | eqid |  |-  { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } | 
						
							| 7 |  | eqid |  |-  ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) = ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) | 
						
							| 8 | 1 2 4 5 6 7 3 | mdegldg |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> E. x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) ) | 
						
							| 9 | 6 7 | tdeglem1 |  |-  ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) : { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } --> NN0 | 
						
							| 10 | 9 | a1i |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) : { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } --> NN0 ) | 
						
							| 11 | 10 | ffvelcdmda |  |-  ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) e. NN0 ) | 
						
							| 12 |  | eleq1 |  |-  ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) -> ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) e. NN0 <-> ( D ` F ) e. NN0 ) ) | 
						
							| 13 | 11 12 | syl5ibcom |  |-  ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) -> ( D ` F ) e. NN0 ) ) | 
						
							| 14 | 13 | adantld |  |-  ( ( ( R e. Ring /\ F e. B /\ F =/= .0. ) /\ x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ) -> ( ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) -> ( D ` F ) e. NN0 ) ) | 
						
							| 15 | 14 | rexlimdva |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( E. x e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } ( ( F ` x ) =/= ( 0g ` R ) /\ ( ( h e. { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |-> ( CCfld gsum h ) ) ` x ) = ( D ` F ) ) -> ( D ` F ) e. NN0 ) ) | 
						
							| 16 | 8 15 | mpd |  |-  ( ( R e. Ring /\ F e. B /\ F =/= .0. ) -> ( D ` F ) e. NN0 ) |