| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegxrcl.d |
|- D = ( I mDeg R ) |
| 2 |
|
mdegxrcl.p |
|- P = ( I mPoly R ) |
| 3 |
|
mdegxrcl.b |
|- B = ( Base ` P ) |
| 4 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 5 |
|
eqid |
|- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
| 6 |
|
eqid |
|- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
| 7 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 8 |
|
imassrn |
|- ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
| 9 |
5 6
|
tdeglem1 |
|- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) : { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } --> NN0 |
| 10 |
|
frn |
|- ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) : { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } --> NN0 -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ NN0 ) |
| 11 |
9 10
|
mp1i |
|- ( F e. B -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ NN0 ) |
| 12 |
|
nn0ssre |
|- NN0 C_ RR |
| 13 |
|
ressxr |
|- RR C_ RR* |
| 14 |
12 13
|
sstri |
|- NN0 C_ RR* |
| 15 |
11 14
|
sstrdi |
|- ( F e. B -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ RR* ) |
| 16 |
8 15
|
sstrid |
|- ( F e. B -> ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* ) |
| 17 |
|
supxrcl |
|- ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. RR* ) |
| 18 |
16 17
|
syl |
|- ( F e. B -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. RR* ) |
| 19 |
7 18
|
eqeltrd |
|- ( F e. B -> ( D ` F ) e. RR* ) |