| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdet0.d |  |-  D = ( N maDet R ) | 
						
							| 2 |  | mdet0.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mdet0.z |  |-  Z = ( 0g ` A ) | 
						
							| 4 |  | mdet0.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | n0 |  |-  ( N =/= (/) <-> E. i i e. N ) | 
						
							| 6 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 7 | 6 | anim1ci |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 9 | 2 4 | mat0op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> .0. ) ) | 
						
							| 10 | 3 9 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> Z = ( x e. N , y e. N |-> .0. ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> Z = ( x e. N , y e. N |-> .0. ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = ( D ` ( x e. N , y e. N |-> .0. ) ) ) | 
						
							| 13 |  | ifid |  |-  if ( x = i , .0. , .0. ) = .0. | 
						
							| 14 | 13 | eqcomi |  |-  .0. = if ( x = i , .0. , .0. ) | 
						
							| 15 | 14 | a1i |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. = if ( x = i , .0. , .0. ) ) | 
						
							| 16 | 15 | mpoeq3dv |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( x e. N , y e. N |-> .0. ) = ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> .0. ) ) = ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 |  | simpll |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> R e. CRing ) | 
						
							| 20 |  | simpr |  |-  ( ( R e. CRing /\ N e. Fin ) -> N e. Fin ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> N e. Fin ) | 
						
							| 22 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 23 | 6 22 | syl |  |-  ( R e. CRing -> R e. Mnd ) | 
						
							| 24 | 23 | adantr |  |-  ( ( R e. CRing /\ N e. Fin ) -> R e. Mnd ) | 
						
							| 25 | 18 4 | mndidcl |  |-  ( R e. Mnd -> .0. e. ( Base ` R ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( R e. CRing /\ N e. Fin ) -> .0. e. ( Base ` R ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. e. ( Base ` R ) ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) /\ x e. N /\ y e. N ) -> .0. e. ( Base ` R ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> i e. N ) | 
						
							| 30 | 1 18 4 19 21 28 29 | mdetr0 |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) = .0. ) | 
						
							| 31 | 12 17 30 | 3eqtrd |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = .0. ) | 
						
							| 32 | 31 | ex |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( i e. N -> ( D ` Z ) = .0. ) ) | 
						
							| 33 | 32 | exlimdv |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( E. i i e. N -> ( D ` Z ) = .0. ) ) | 
						
							| 34 | 5 33 | biimtrid |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( N =/= (/) -> ( D ` Z ) = .0. ) ) | 
						
							| 35 | 34 | 3impia |  |-  ( ( R e. CRing /\ N e. Fin /\ N =/= (/) ) -> ( D ` Z ) = .0. ) |