Metamath Proof Explorer


Theorem mdet0fv0

Description: The determinant of the empty matrix on a given ring is the unit of that ring . (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0fv0
|- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) )

Proof

Step Hyp Ref Expression
1 mdet0pr
 |-  ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } )
2 1 fveq1d
 |-  ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( { <. (/) , ( 1r ` R ) >. } ` (/) ) )
3 0ex
 |-  (/) e. _V
4 fvex
 |-  ( 1r ` R ) e. _V
5 3 4 fvsn
 |-  ( { <. (/) , ( 1r ` R ) >. } ` (/) ) = ( 1r ` R )
6 2 5 eqtrdi
 |-  ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) )