Description: The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0fv0 | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0pr | |- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |
|
| 2 | 1 | fveq1d | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( { <. (/) , ( 1r ` R ) >. } ` (/) ) ) |
| 3 | 0ex | |- (/) e. _V |
|
| 4 | fvex | |- ( 1r ` R ) e. _V |
|
| 5 | 3 4 | fvsn | |- ( { <. (/) , ( 1r ` R ) >. } ` (/) ) = ( 1r ` R ) |
| 6 | 2 5 | eqtrdi | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) |