Description: The determinant of the empty matrix on a given ring is the unit of that ring . (Contributed by AV, 28-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | mdet0fv0 | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdet0pr | |- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |
|
2 | 1 | fveq1d | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( { <. (/) , ( 1r ` R ) >. } ` (/) ) ) |
3 | 0ex | |- (/) e. _V |
|
4 | fvex | |- ( 1r ` R ) e. _V |
|
5 | 3 4 | fvsn | |- ( { <. (/) , ( 1r ` R ) >. } ` (/) ) = ( 1r ` R ) |
6 | 2 5 | eqtrdi | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) |