| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdet1.d |  |-  D = ( N maDet R ) | 
						
							| 2 |  | mdet1.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mdet1.n |  |-  I = ( 1r ` A ) | 
						
							| 4 |  | mdet1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | id |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( R e. CRing /\ N e. Fin ) ) | 
						
							| 6 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 7 | 6 | anim1ci |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 8 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 9 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 10 | 9 3 | ringidcl |  |-  ( A e. Ring -> I e. ( Base ` A ) ) | 
						
							| 11 | 7 8 10 | 3syl |  |-  ( ( R e. CRing /\ N e. Fin ) -> I e. ( Base ` A ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 13 | 12 4 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 14 | 6 13 | syl |  |-  ( R e. CRing -> .1. e. ( Base ` R ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( R e. CRing /\ N e. Fin ) -> .1. e. ( Base ` R ) ) | 
						
							| 16 | 5 11 15 | jca32 |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 18 |  | simplr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> N e. Fin ) | 
						
							| 19 | 6 | adantr |  |-  ( ( R e. CRing /\ N e. Fin ) -> R e. Ring ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> R e. Ring ) | 
						
							| 21 |  | simprl |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) | 
						
							| 22 |  | simprr |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) | 
						
							| 23 | 2 4 17 18 20 21 22 3 | mat1ov |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ( R e. CRing /\ N e. Fin ) -> A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) | 
						
							| 25 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 26 |  | eqid |  |-  ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) | 
						
							| 27 | 1 2 9 25 17 12 26 | mdetdiagid |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) -> ( A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) ) | 
						
							| 28 | 16 24 27 | sylc |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) | 
						
							| 29 |  | ringsrg |  |-  ( R e. Ring -> R e. SRing ) | 
						
							| 30 | 6 29 | syl |  |-  ( R e. CRing -> R e. SRing ) | 
						
							| 31 |  | hashcl |  |-  ( N e. Fin -> ( # ` N ) e. NN0 ) | 
						
							| 32 | 25 26 4 | srg1expzeq1 |  |-  ( ( R e. SRing /\ ( # ` N ) e. NN0 ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) | 
						
							| 33 | 30 31 32 | syl2an |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) | 
						
							| 34 | 28 33 | eqtrd |  |-  ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = .1. ) |