Step |
Hyp |
Ref |
Expression |
1 |
|
mdet1.d |
|- D = ( N maDet R ) |
2 |
|
mdet1.a |
|- A = ( N Mat R ) |
3 |
|
mdet1.n |
|- I = ( 1r ` A ) |
4 |
|
mdet1.o |
|- .1. = ( 1r ` R ) |
5 |
|
id |
|- ( ( R e. CRing /\ N e. Fin ) -> ( R e. CRing /\ N e. Fin ) ) |
6 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
7 |
6
|
anim1ci |
|- ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) |
8 |
2
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
9 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
10 |
9 3
|
ringidcl |
|- ( A e. Ring -> I e. ( Base ` A ) ) |
11 |
7 8 10
|
3syl |
|- ( ( R e. CRing /\ N e. Fin ) -> I e. ( Base ` A ) ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
12 4
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
14 |
6 13
|
syl |
|- ( R e. CRing -> .1. e. ( Base ` R ) ) |
15 |
14
|
adantr |
|- ( ( R e. CRing /\ N e. Fin ) -> .1. e. ( Base ` R ) ) |
16 |
5 11 15
|
jca32 |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
|
simplr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> N e. Fin ) |
19 |
6
|
adantr |
|- ( ( R e. CRing /\ N e. Fin ) -> R e. Ring ) |
20 |
19
|
adantr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> R e. Ring ) |
21 |
|
simprl |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> i e. N ) |
22 |
|
simprr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> j e. N ) |
23 |
2 4 17 18 20 21 22 3
|
mat1ov |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( i e. N /\ j e. N ) ) -> ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) |
24 |
23
|
ralrimivva |
|- ( ( R e. CRing /\ N e. Fin ) -> A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) |
25 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
26 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
27 |
1 2 9 25 17 12 26
|
mdetdiagid |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ ( I e. ( Base ` A ) /\ .1. e. ( Base ` R ) ) ) -> ( A. i e. N A. j e. N ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) ) |
28 |
16 24 27
|
sylc |
|- ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) ) |
29 |
|
ringsrg |
|- ( R e. Ring -> R e. SRing ) |
30 |
6 29
|
syl |
|- ( R e. CRing -> R e. SRing ) |
31 |
|
hashcl |
|- ( N e. Fin -> ( # ` N ) e. NN0 ) |
32 |
25 26 4
|
srg1expzeq1 |
|- ( ( R e. SRing /\ ( # ` N ) e. NN0 ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) |
33 |
30 31 32
|
syl2an |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( # ` N ) ( .g ` ( mulGrp ` R ) ) .1. ) = .1. ) |
34 |
28 33
|
eqtrd |
|- ( ( R e. CRing /\ N e. Fin ) -> ( D ` I ) = .1. ) |