| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetf.d |  |-  D = ( N maDet R ) | 
						
							| 2 |  | mdetf.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mdetf.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mdetf.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. CRing /\ m e. B ) -> R e. Ring ) | 
						
							| 7 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( R e. CRing /\ m e. B ) -> R e. CMnd ) | 
						
							| 9 | 2 3 | matrcl |  |-  ( m e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( R e. CRing /\ m e. B ) -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 11 | 10 | simpld |  |-  ( ( R e. CRing /\ m e. B ) -> N e. Fin ) | 
						
							| 12 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 14 | 12 13 | symgbasfi |  |-  ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) | 
						
							| 15 | 11 14 | syl |  |-  ( ( R e. CRing /\ m e. B ) -> ( Base ` ( SymGrp ` N ) ) e. Fin ) | 
						
							| 16 | 5 | ad2antrr |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) | 
						
							| 17 |  | zrhpsgnmhm |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 18 | 6 11 17 | syl2anc |  |-  ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 20 | 19 4 | mgpbas |  |-  K = ( Base ` ( mulGrp ` R ) ) | 
						
							| 21 | 13 20 | mhmf |  |-  ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) | 
						
							| 22 | 18 21 | syl |  |-  ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) | 
						
							| 23 | 22 | ffvelcdmda |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K ) | 
						
							| 24 | 19 | crngmgp |  |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 26 | 11 | adantr |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) | 
						
							| 27 | 2 4 3 | matbas2i |  |-  ( m e. B -> m e. ( K ^m ( N X. N ) ) ) | 
						
							| 28 | 27 | ad3antlr |  |-  ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m e. ( K ^m ( N X. N ) ) ) | 
						
							| 29 |  | elmapi |  |-  ( m e. ( K ^m ( N X. N ) ) -> m : ( N X. N ) --> K ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m : ( N X. N ) --> K ) | 
						
							| 31 | 12 13 | symgbasf |  |-  ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N --> N ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) | 
						
							| 33 | 32 | ffvelcdmda |  |-  ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) | 
						
							| 35 | 30 33 34 | fovcdmd |  |-  ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) m c ) e. K ) | 
						
							| 36 | 35 | ralrimiva |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) m c ) e. K ) | 
						
							| 37 | 20 25 26 36 | gsummptcl |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) | 
						
							| 38 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 39 | 4 38 | ringcl |  |-  ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) | 
						
							| 40 | 16 23 37 39 | syl3anc |  |-  ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ( R e. CRing /\ m e. B ) -> A. p e. ( Base ` ( SymGrp ` N ) ) ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) | 
						
							| 42 | 4 8 15 41 | gsummptcl |  |-  ( ( R e. CRing /\ m e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) e. K ) | 
						
							| 43 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 44 |  | eqid |  |-  ( pmSgn ` N ) = ( pmSgn ` N ) | 
						
							| 45 | 1 2 3 13 43 44 38 19 | mdetfval |  |-  D = ( m e. B |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) ) | 
						
							| 46 | 42 45 | fmptd |  |-  ( R e. CRing -> D : B --> K ) |