Step |
Hyp |
Ref |
Expression |
1 |
|
mdetfval1.d |
|- D = ( N maDet R ) |
2 |
|
mdetfval1.a |
|- A = ( N Mat R ) |
3 |
|
mdetfval1.b |
|- B = ( Base ` A ) |
4 |
|
mdetfval1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
5 |
|
mdetfval1.y |
|- Y = ( ZRHom ` R ) |
6 |
|
mdetfval1.s |
|- S = ( pmSgn ` N ) |
7 |
|
mdetfval1.t |
|- .x. = ( .r ` R ) |
8 |
|
mdetfval1.u |
|- U = ( mulGrp ` R ) |
9 |
|
oveq |
|- ( m = M -> ( ( p ` x ) m x ) = ( ( p ` x ) M x ) ) |
10 |
9
|
mpteq2dv |
|- ( m = M -> ( x e. N |-> ( ( p ` x ) m x ) ) = ( x e. N |-> ( ( p ` x ) M x ) ) ) |
11 |
10
|
oveq2d |
|- ( m = M -> ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) = ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) |
12 |
11
|
oveq2d |
|- ( m = M -> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) = ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) |
13 |
12
|
mpteq2dv |
|- ( m = M -> ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
14 |
13
|
oveq2d |
|- ( m = M -> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
15 |
1 2 3 4 5 6 7 8
|
mdetfval1 |
|- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
16 |
|
ovex |
|- ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) e. _V |
17 |
14 15 16
|
fvmpt |
|- ( M e. B -> ( D ` M ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |