Step |
Hyp |
Ref |
Expression |
1 |
|
mdetr0.d |
|- D = ( N maDet R ) |
2 |
|
mdetr0.k |
|- K = ( Base ` R ) |
3 |
|
mdetr0.z |
|- .0. = ( 0g ` R ) |
4 |
|
mdetr0.r |
|- ( ph -> R e. CRing ) |
5 |
|
mdetr0.n |
|- ( ph -> N e. Fin ) |
6 |
|
mdetr0.x |
|- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
7 |
|
mdetr0.i |
|- ( ph -> I e. N ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
10 |
4 9
|
syl |
|- ( ph -> R e. Ring ) |
11 |
2 3
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
12 |
10 11
|
syl |
|- ( ph -> .0. e. K ) |
13 |
12
|
3ad2ant1 |
|- ( ( ph /\ i e. N /\ j e. N ) -> .0. e. K ) |
14 |
1 2 8 4 5 13 6 12 7
|
mdetrsca2 |
|- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) ) = ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) ) |
15 |
2 8 3
|
ringlz |
|- ( ( R e. Ring /\ .0. e. K ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
16 |
10 12 15
|
syl2anc |
|- ( ph -> ( .0. ( .r ` R ) .0. ) = .0. ) |
17 |
16
|
ifeq1d |
|- ( ph -> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) = if ( i = I , .0. , X ) ) |
18 |
17
|
mpoeq3dv |
|- ( ph -> ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) = ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) |
20 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
21 |
|
eqid |
|- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
22 |
1 20 21 2
|
mdetf |
|- ( R e. CRing -> D : ( Base ` ( N Mat R ) ) --> K ) |
23 |
4 22
|
syl |
|- ( ph -> D : ( Base ` ( N Mat R ) ) --> K ) |
24 |
13 6
|
ifcld |
|- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , .0. , X ) e. K ) |
25 |
20 2 21 5 4 24
|
matbas2d |
|- ( ph -> ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) e. ( Base ` ( N Mat R ) ) ) |
26 |
23 25
|
ffvelrnd |
|- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) e. K ) |
27 |
2 8 3
|
ringlz |
|- ( ( R e. Ring /\ ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) e. K ) -> ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) = .0. ) |
28 |
10 26 27
|
syl2anc |
|- ( ph -> ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) = .0. ) |
29 |
14 19 28
|
3eqtr3d |
|- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) = .0. ) |