| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetralt.d |  |-  D = ( N maDet R ) | 
						
							| 2 |  | mdetralt.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mdetralt.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mdetralt.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdetralt.r |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | mdetralt.x |  |-  ( ph -> X e. B ) | 
						
							| 7 |  | mdetralt.i |  |-  ( ph -> I e. N ) | 
						
							| 8 |  | mdetralt.j |  |-  ( ph -> J e. N ) | 
						
							| 9 |  | mdetralt.ij |  |-  ( ph -> I =/= J ) | 
						
							| 10 |  | mdetralt.eq |  |-  ( ph -> A. a e. N ( I X a ) = ( J X a ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 12 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 13 |  | eqid |  |-  ( pmSgn ` N ) = ( pmSgn ` N ) | 
						
							| 14 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 15 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 16 | 1 2 3 11 12 13 14 15 | mdetleib |  |-  ( X e. B -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 20 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 21 | 5 20 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 22 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> R e. CMnd ) | 
						
							| 24 | 2 3 | matrcl |  |-  ( X e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 25 | 6 24 | syl |  |-  ( ph -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 26 | 25 | simpld |  |-  ( ph -> N e. Fin ) | 
						
							| 27 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 28 | 27 11 | symgbasfi |  |-  ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) | 
						
							| 29 | 26 28 | syl |  |-  ( ph -> ( Base ` ( SymGrp ` N ) ) e. Fin ) | 
						
							| 30 | 21 | adantr |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) | 
						
							| 31 |  | zrhpsgnmhm |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 32 | 21 26 31 | syl2anc |  |-  ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) | 
						
							| 33 | 15 18 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 34 | 11 33 | mhmf |  |-  ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) | 
						
							| 35 | 32 34 | syl |  |-  ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) | 
						
							| 36 | 35 | ffvelcdmda |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) ) | 
						
							| 37 | 15 | crngmgp |  |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 38 | 5 37 | syl |  |-  ( ph -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 40 | 26 | adantr |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) | 
						
							| 41 | 2 18 3 | matbas2i |  |-  ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 42 | 6 41 | syl |  |-  ( ph -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 43 |  | elmapi |  |-  ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> X : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> X : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 46 | 27 11 | symgbasf1o |  |-  ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N -1-1-onto-> N ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N -1-1-onto-> N ) | 
						
							| 48 |  | f1of |  |-  ( p : N -1-1-onto-> N -> p : N --> N ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) | 
						
							| 50 | 49 | ffvelcdmda |  |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) | 
						
							| 52 | 45 50 51 | fovcdmd |  |-  ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) X c ) e. ( Base ` R ) ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) X c ) e. ( Base ` R ) ) | 
						
							| 54 | 33 39 40 53 | gsummptcl |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) | 
						
							| 55 | 18 14 | ringcl |  |-  ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) | 
						
							| 56 | 30 36 54 55 | syl3anc |  |-  ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) | 
						
							| 57 |  | disjdif |  |-  ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) | 
						
							| 58 | 57 | a1i |  |-  ( ph -> ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) ) | 
						
							| 59 | 27 11 | evpmss |  |-  ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) | 
						
							| 60 |  | undif |  |-  ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) <-> ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 61 | 59 60 | mpbi |  |-  ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 62 | 61 | eqcomi |  |-  ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 63 | 62 | a1i |  |-  ( ph -> ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) | 
						
							| 64 |  | eqid |  |-  ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 65 | 18 19 23 29 56 58 63 64 | gsummptfidmsplitres |  |-  ( ph -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) ) | 
						
							| 66 |  | resmpt |  |-  ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 67 | 59 66 | ax-mp |  |-  ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 68 | 21 | adantr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> R e. Ring ) | 
						
							| 69 | 26 | adantr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> N e. Fin ) | 
						
							| 70 |  | simpr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( pmEven ` N ) ) | 
						
							| 71 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 72 | 12 13 71 | zrhpsgnevpm |  |-  ( ( R e. Ring /\ N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) | 
						
							| 73 | 68 69 70 72 | syl3anc |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 75 | 59 | sseli |  |-  ( p e. ( pmEven ` N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 76 | 75 54 | sylan2 |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) | 
						
							| 77 | 18 14 71 | ringlidm |  |-  ( ( R e. Ring /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) | 
						
							| 78 | 68 76 77 | syl2anc |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) | 
						
							| 79 | 74 78 | eqtrd |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) | 
						
							| 80 | 79 | mpteq2dva |  |-  ( ph -> ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 81 | 67 80 | eqtrid |  |-  ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 83 |  | difss |  |-  ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) | 
						
							| 84 |  | resmpt |  |-  ( ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 85 | 83 84 | ax-mp |  |-  ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 86 | 21 | adantr |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> R e. Ring ) | 
						
							| 87 | 26 | adantr |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> N e. Fin ) | 
						
							| 88 |  | simpr |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 89 |  | eqid |  |-  ( invg ` R ) = ( invg ` R ) | 
						
							| 90 | 12 13 71 11 89 | zrhpsgnodpm |  |-  ( ( R e. Ring /\ N e. Fin /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) | 
						
							| 91 | 86 87 88 90 | syl3anc |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) | 
						
							| 92 | 91 | oveq1d |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 93 |  | eldifi |  |-  ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 94 | 93 54 | sylan2 |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) | 
						
							| 95 | 18 14 71 89 86 94 | ringnegl |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 96 | 92 95 | eqtrd |  |-  ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 97 | 96 | mpteq2dva |  |-  ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 98 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 99 | 21 98 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 100 | 18 89 | grpinvf |  |-  ( R e. Grp -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ph -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) | 
						
							| 102 | 101 94 | cofmpt |  |-  ( ph -> ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 103 | 97 102 | eqtr4d |  |-  ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 104 | 85 103 | eqtrid |  |-  ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 105 | 104 | oveq2d |  |-  ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 106 |  | ringabl |  |-  ( R e. Ring -> R e. Abel ) | 
						
							| 107 | 21 106 | syl |  |-  ( ph -> R e. Abel ) | 
						
							| 108 |  | difssd |  |-  ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 109 | 29 108 | ssfid |  |-  ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) e. Fin ) | 
						
							| 110 |  | eqid |  |-  ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) | 
						
							| 111 | 18 4 89 107 109 94 110 | gsummptfidminv |  |-  ( ph -> ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 112 | 94 | ralrimiva |  |-  ( ph -> A. p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) | 
						
							| 113 | 7 8 | prssd |  |-  ( ph -> { I , J } C_ N ) | 
						
							| 114 |  | enpr2 |  |-  ( ( I e. N /\ J e. N /\ I =/= J ) -> { I , J } ~~ 2o ) | 
						
							| 115 | 7 8 9 114 | syl3anc |  |-  ( ph -> { I , J } ~~ 2o ) | 
						
							| 116 |  | eqid |  |-  ( pmTrsp ` N ) = ( pmTrsp ` N ) | 
						
							| 117 |  | eqid |  |-  ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) | 
						
							| 118 | 116 117 | pmtrrn |  |-  ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) | 
						
							| 119 | 26 113 115 118 | syl3anc |  |-  ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) | 
						
							| 120 | 27 11 117 | pmtrodpm |  |-  ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 121 | 26 119 120 | syl2anc |  |-  ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 122 | 27 11 | evpmodpmf1o |  |-  ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 123 | 26 121 122 | syl2anc |  |-  ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 124 | 18 23 109 112 110 123 | gsummptfif1o |  |-  ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) ) | 
						
							| 125 |  | eleq1w |  |-  ( p = q -> ( p e. ( pmEven ` N ) <-> q e. ( pmEven ` N ) ) ) | 
						
							| 126 | 125 | anbi2d |  |-  ( p = q -> ( ( ph /\ p e. ( pmEven ` N ) ) <-> ( ph /\ q e. ( pmEven ` N ) ) ) ) | 
						
							| 127 |  | oveq2 |  |-  ( p = q -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) | 
						
							| 128 | 127 | eleq1d |  |-  ( p = q -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) | 
						
							| 129 | 126 128 | imbi12d |  |-  ( p = q -> ( ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) <-> ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) | 
						
							| 130 | 27 | symggrp |  |-  ( N e. Fin -> ( SymGrp ` N ) e. Grp ) | 
						
							| 131 | 26 130 | syl |  |-  ( ph -> ( SymGrp ` N ) e. Grp ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( SymGrp ` N ) e. Grp ) | 
						
							| 133 | 117 27 11 | symgtrf |  |-  ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) | 
						
							| 134 | 119 | adantr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) | 
						
							| 135 | 133 134 | sselid |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 136 | 75 | adantl |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 137 |  | eqid |  |-  ( +g ` ( SymGrp ` N ) ) = ( +g ` ( SymGrp ` N ) ) | 
						
							| 138 | 11 137 | grpcl |  |-  ( ( ( SymGrp ` N ) e. Grp /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 139 | 132 135 136 138 | syl3anc |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 140 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 141 | 27 13 140 | psgnghm2 |  |-  ( N e. Fin -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 142 | 26 141 | syl |  |-  ( ph -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 143 | 142 | adantr |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 144 |  | prex |  |-  { 1 , -u 1 } e. _V | 
						
							| 145 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 146 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 147 | 145 146 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 148 | 140 147 | ressplusg |  |-  ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 149 | 144 148 | ax-mp |  |-  x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 150 | 11 137 149 | ghmlin |  |-  ( ( ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) | 
						
							| 151 | 143 135 136 150 | syl3anc |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) | 
						
							| 152 | 27 117 13 | psgnpmtr |  |-  ( ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) | 
						
							| 153 | 134 152 | syl |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) | 
						
							| 154 | 27 11 13 | psgnevpm |  |-  ( ( N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) | 
						
							| 155 | 26 154 | sylan |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) | 
						
							| 156 | 153 155 | oveq12d |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = ( -u 1 x. 1 ) ) | 
						
							| 157 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 158 | 157 | mulridi |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 159 | 156 158 | eqtrdi |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = -u 1 ) | 
						
							| 160 | 151 159 | eqtrd |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) | 
						
							| 161 | 27 11 13 | psgnodpmr |  |-  ( ( N e. Fin /\ ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) /\ ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 162 | 69 139 160 161 | syl3anc |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 163 | 129 162 | chvarvv |  |-  ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) | 
						
							| 164 |  | eqidd |  |-  ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) = ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) | 
						
							| 165 |  | eqidd |  |-  ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 166 |  | fveq1 |  |-  ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( p ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( p ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) | 
						
							| 168 | 167 | mpteq2dv |  |-  ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( c e. N |-> ( ( p ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) | 
						
							| 169 | 168 | oveq2d |  |-  ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) | 
						
							| 170 | 163 164 165 169 | fmptco |  |-  ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) ) | 
						
							| 171 |  | oveq2 |  |-  ( q = p -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) | 
						
							| 172 | 171 | fveq1d |  |-  ( q = p -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) ) | 
						
							| 173 | 172 | oveq1d |  |-  ( q = p -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) | 
						
							| 174 | 173 | mpteq2dv |  |-  ( q = p -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) | 
						
							| 175 | 174 | oveq2d |  |-  ( q = p -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) | 
						
							| 176 | 175 | cbvmptv |  |-  ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) | 
						
							| 177 | 176 | a1i |  |-  ( ph -> ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) ) | 
						
							| 178 | 135 | adantr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 179 | 136 | adantr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 180 | 27 11 137 | symgov |  |-  ( ( ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) | 
						
							| 181 | 178 179 180 | syl2anc |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) | 
						
							| 182 | 181 | fveq1d |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) ) | 
						
							| 183 | 75 49 | sylan2 |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> p : N --> N ) | 
						
							| 184 |  | fvco3 |  |-  ( ( p : N --> N /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) | 
						
							| 185 | 183 184 | sylan |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) | 
						
							| 186 | 182 185 | eqtrd |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) | 
						
							| 187 | 186 | oveq1d |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) ) | 
						
							| 188 | 116 | pmtrprfv |  |-  ( ( N e. Fin /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) | 
						
							| 189 | 26 7 8 9 188 | syl13anc |  |-  ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) | 
						
							| 190 | 189 | ad2antrr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) | 
						
							| 191 | 190 | oveq1d |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( J X c ) ) | 
						
							| 192 |  | oveq2 |  |-  ( a = c -> ( I X a ) = ( I X c ) ) | 
						
							| 193 |  | oveq2 |  |-  ( a = c -> ( J X a ) = ( J X c ) ) | 
						
							| 194 | 192 193 | eqeq12d |  |-  ( a = c -> ( ( I X a ) = ( J X a ) <-> ( I X c ) = ( J X c ) ) ) | 
						
							| 195 | 10 | ad2antrr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> A. a e. N ( I X a ) = ( J X a ) ) | 
						
							| 196 |  | simpr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> c e. N ) | 
						
							| 197 | 194 195 196 | rspcdva |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( I X c ) = ( J X c ) ) | 
						
							| 198 | 191 197 | eqtr4d |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) | 
						
							| 199 |  | fveq2 |  |-  ( ( p ` c ) = I -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) ) | 
						
							| 200 | 199 | oveq1d |  |-  ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) ) | 
						
							| 201 |  | oveq1 |  |-  ( ( p ` c ) = I -> ( ( p ` c ) X c ) = ( I X c ) ) | 
						
							| 202 | 200 201 | eqeq12d |  |-  ( ( p ` c ) = I -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) ) | 
						
							| 203 | 198 202 | syl5ibrcom |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) | 
						
							| 204 |  | prcom |  |-  { I , J } = { J , I } | 
						
							| 205 | 204 | fveq2i |  |-  ( ( pmTrsp ` N ) ` { I , J } ) = ( ( pmTrsp ` N ) ` { J , I } ) | 
						
							| 206 | 205 | fveq1i |  |-  ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) | 
						
							| 207 | 9 | necomd |  |-  ( ph -> J =/= I ) | 
						
							| 208 | 116 | pmtrprfv |  |-  ( ( N e. Fin /\ ( J e. N /\ I e. N /\ J =/= I ) ) -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) | 
						
							| 209 | 26 8 7 207 208 | syl13anc |  |-  ( ph -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) | 
						
							| 210 | 206 209 | eqtrid |  |-  ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = I ) | 
						
							| 211 | 210 | oveq1d |  |-  ( ph -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) | 
						
							| 212 | 211 | ad2antrr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) | 
						
							| 213 | 212 197 | eqtrd |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) | 
						
							| 214 |  | fveq2 |  |-  ( ( p ` c ) = J -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) ) | 
						
							| 215 | 214 | oveq1d |  |-  ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) ) | 
						
							| 216 |  | oveq1 |  |-  ( ( p ` c ) = J -> ( ( p ` c ) X c ) = ( J X c ) ) | 
						
							| 217 | 215 216 | eqeq12d |  |-  ( ( p ` c ) = J -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) ) | 
						
							| 218 | 213 217 | syl5ibrcom |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) | 
						
							| 219 | 218 | a1dd |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) | 
						
							| 220 |  | neanior |  |-  ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) <-> -. ( ( p ` c ) = J \/ ( p ` c ) = I ) ) | 
						
							| 221 |  | elpri |  |-  ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = I \/ ( p ` c ) = J ) ) | 
						
							| 222 | 221 | orcomd |  |-  ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = J \/ ( p ` c ) = I ) ) | 
						
							| 223 | 222 | con3i |  |-  ( -. ( ( p ` c ) = J \/ ( p ` c ) = I ) -> -. ( p ` c ) e. { I , J } ) | 
						
							| 224 | 220 223 | sylbi |  |-  ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) | 
						
							| 225 | 224 | 3adant1 |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) | 
						
							| 226 | 116 | pmtrmvd |  |-  ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 227 | 26 113 115 226 | syl3anc |  |-  ( ph -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 228 | 227 | ad2antrr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 229 | 228 | 3ad2ant1 |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) | 
						
							| 230 | 225 229 | neleqtrrd |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) | 
						
							| 231 | 116 | pmtrf |  |-  ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) | 
						
							| 232 | 26 113 115 231 | syl3anc |  |-  ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) | 
						
							| 233 | 232 | ffnd |  |-  ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) | 
						
							| 234 | 233 | ad2antrr |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) | 
						
							| 235 | 183 | ffvelcdmda |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( p ` c ) e. N ) | 
						
							| 236 |  | fnelnfp |  |-  ( ( ( ( pmTrsp ` N ) ` { I , J } ) Fn N /\ ( p ` c ) e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) | 
						
							| 237 | 234 235 236 | syl2anc |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) | 
						
							| 238 | 237 | 3ad2ant1 |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) | 
						
							| 239 | 238 | necon2bbid |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) <-> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) ) | 
						
							| 240 | 230 239 | mpbird |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) ) | 
						
							| 241 | 240 | oveq1d |  |-  ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) | 
						
							| 242 | 241 | 3exp |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) | 
						
							| 243 | 219 242 | pm2.61dne |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) | 
						
							| 244 | 203 243 | pm2.61dne |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) | 
						
							| 245 | 187 244 | eqtrd |  |-  ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( p ` c ) X c ) ) | 
						
							| 246 | 245 | mpteq2dva |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) = ( c e. N |-> ( ( p ` c ) X c ) ) ) | 
						
							| 247 | 246 | oveq2d |  |-  ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) | 
						
							| 248 | 247 | mpteq2dva |  |-  ( ph -> ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 249 | 170 177 248 | 3eqtrd |  |-  ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) | 
						
							| 250 | 249 | oveq2d |  |-  ( ph -> ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 251 | 124 250 | eqtrd |  |-  ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) | 
						
							| 252 | 251 | fveq2d |  |-  ( ph -> ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 253 | 105 111 252 | 3eqtrd |  |-  ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) | 
						
							| 254 | 82 253 | oveq12d |  |-  ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) ) | 
						
							| 255 | 59 | a1i |  |-  ( ph -> ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) ) | 
						
							| 256 | 29 255 | ssfid |  |-  ( ph -> ( pmEven ` N ) e. Fin ) | 
						
							| 257 | 76 | ralrimiva |  |-  ( ph -> A. p e. ( pmEven ` N ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) | 
						
							| 258 | 18 23 256 257 | gsummptcl |  |-  ( ph -> ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) | 
						
							| 259 | 18 19 4 89 | grprinv |  |-  ( ( R e. Grp /\ ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) | 
						
							| 260 | 99 258 259 | syl2anc |  |-  ( ph -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) | 
						
							| 261 | 254 260 | eqtrd |  |-  ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = .0. ) | 
						
							| 262 | 17 65 261 | 3eqtrd |  |-  ( ph -> ( D ` X ) = .0. ) |