Step |
Hyp |
Ref |
Expression |
1 |
|
mdetralt2.d |
|- D = ( N maDet R ) |
2 |
|
mdetralt2.k |
|- K = ( Base ` R ) |
3 |
|
mdetralt2.z |
|- .0. = ( 0g ` R ) |
4 |
|
mdetralt2.r |
|- ( ph -> R e. CRing ) |
5 |
|
mdetralt2.n |
|- ( ph -> N e. Fin ) |
6 |
|
mdetralt2.x |
|- ( ( ph /\ j e. N ) -> X e. K ) |
7 |
|
mdetralt2.y |
|- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
8 |
|
mdetralt2.i |
|- ( ph -> I e. N ) |
9 |
|
mdetralt2.j |
|- ( ph -> J e. N ) |
10 |
|
mdetralt2.ij |
|- ( ph -> I =/= J ) |
11 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
12 |
|
eqid |
|- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
13 |
6
|
3adant2 |
|- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
14 |
13 7
|
ifcld |
|- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = J , X , Y ) e. K ) |
15 |
13 14
|
ifcld |
|- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , X , if ( i = J , X , Y ) ) e. K ) |
16 |
11 2 12 5 4 15
|
matbas2d |
|- ( ph -> ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) e. ( Base ` ( N Mat R ) ) ) |
17 |
|
eqidd |
|- ( ( ph /\ w e. N ) -> ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) = ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) ) |
18 |
|
iftrue |
|- ( i = I -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
19 |
18
|
ad2antrl |
|- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
20 |
|
csbeq1a |
|- ( j = w -> X = [_ w / j ]_ X ) |
21 |
20
|
ad2antll |
|- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> X = [_ w / j ]_ X ) |
22 |
19 21
|
eqtrd |
|- ( ( ( ph /\ w e. N ) /\ ( i = I /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = [_ w / j ]_ X ) |
23 |
|
eqidd |
|- ( ( ( ph /\ w e. N ) /\ i = I ) -> N = N ) |
24 |
8
|
adantr |
|- ( ( ph /\ w e. N ) -> I e. N ) |
25 |
|
simpr |
|- ( ( ph /\ w e. N ) -> w e. N ) |
26 |
|
nfv |
|- F/ j ( ph /\ w e. N ) |
27 |
|
nfcsb1v |
|- F/_ j [_ w / j ]_ X |
28 |
27
|
nfel1 |
|- F/ j [_ w / j ]_ X e. K |
29 |
26 28
|
nfim |
|- F/ j ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) |
30 |
|
eleq1w |
|- ( j = w -> ( j e. N <-> w e. N ) ) |
31 |
30
|
anbi2d |
|- ( j = w -> ( ( ph /\ j e. N ) <-> ( ph /\ w e. N ) ) ) |
32 |
20
|
eleq1d |
|- ( j = w -> ( X e. K <-> [_ w / j ]_ X e. K ) ) |
33 |
31 32
|
imbi12d |
|- ( j = w -> ( ( ( ph /\ j e. N ) -> X e. K ) <-> ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) ) ) |
34 |
29 33 6
|
chvarfv |
|- ( ( ph /\ w e. N ) -> [_ w / j ]_ X e. K ) |
35 |
|
nfv |
|- F/ i ( ph /\ w e. N ) |
36 |
|
nfcv |
|- F/_ j I |
37 |
|
nfcv |
|- F/_ i w |
38 |
|
nfcv |
|- F/_ i [_ w / j ]_ X |
39 |
17 22 23 24 25 34 35 26 36 37 38 27
|
ovmpodxf |
|- ( ( ph /\ w e. N ) -> ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = [_ w / j ]_ X ) |
40 |
|
iftrue |
|- ( i = J -> if ( i = J , X , Y ) = X ) |
41 |
40
|
ifeq2d |
|- ( i = J -> if ( i = I , X , if ( i = J , X , Y ) ) = if ( i = I , X , X ) ) |
42 |
|
ifid |
|- if ( i = I , X , X ) = X |
43 |
41 42
|
eqtrdi |
|- ( i = J -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
44 |
43
|
ad2antrl |
|- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = X ) |
45 |
20
|
ad2antll |
|- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> X = [_ w / j ]_ X ) |
46 |
44 45
|
eqtrd |
|- ( ( ( ph /\ w e. N ) /\ ( i = J /\ j = w ) ) -> if ( i = I , X , if ( i = J , X , Y ) ) = [_ w / j ]_ X ) |
47 |
|
eqidd |
|- ( ( ( ph /\ w e. N ) /\ i = J ) -> N = N ) |
48 |
9
|
adantr |
|- ( ( ph /\ w e. N ) -> J e. N ) |
49 |
|
nfcv |
|- F/_ j J |
50 |
17 46 47 48 25 34 35 26 49 37 38 27
|
ovmpodxf |
|- ( ( ph /\ w e. N ) -> ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = [_ w / j ]_ X ) |
51 |
39 50
|
eqtr4d |
|- ( ( ph /\ w e. N ) -> ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) ) |
52 |
51
|
ralrimiva |
|- ( ph -> A. w e. N ( I ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) = ( J ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) w ) ) |
53 |
1 11 12 3 4 16 8 9 10 52
|
mdetralt |
|- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , X , if ( i = J , X , Y ) ) ) ) = .0. ) |