Step |
Hyp |
Ref |
Expression |
1 |
|
mdettpos.d |
|- D = ( N maDet R ) |
2 |
|
mdettpos.a |
|- A = ( N Mat R ) |
3 |
|
mdettpos.b |
|- B = ( Base ` A ) |
4 |
|
ovtpos |
|- ( ( p ` x ) tpos M x ) = ( x M ( p ` x ) ) |
5 |
4
|
mpteq2i |
|- ( x e. N |-> ( ( p ` x ) tpos M x ) ) = ( x e. N |-> ( x M ( p ` x ) ) ) |
6 |
5
|
oveq2i |
|- ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) |
7 |
6
|
oveq2i |
|- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) |
8 |
7
|
mpteq2i |
|- ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) |
9 |
8
|
oveq2i |
|- ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) ) |
10 |
2 3
|
mattposcl |
|- ( M e. B -> tpos M e. B ) |
11 |
10
|
adantl |
|- ( ( R e. CRing /\ M e. B ) -> tpos M e. B ) |
12 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
13 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
14 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
17 |
1 2 3 12 13 14 15 16
|
mdetleib |
|- ( tpos M e. B -> ( D ` tpos M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) ) |
18 |
11 17
|
syl |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) ) |
19 |
1 2 3 12 13 14 15 16
|
mdetleib2 |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) ) ) |
20 |
9 18 19
|
3eqtr4a |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) |