Description: According to the definition in Weierstrass p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018) (Revised by Alexander van der Vekens, 8-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
mdetuni.b | |- B = ( Base ` A ) |
||
mdetuni.k | |- K = ( Base ` R ) |
||
mdetuni.0g | |- .0. = ( 0g ` R ) |
||
mdetuni.1r | |- .1. = ( 1r ` R ) |
||
mdetuni.pg | |- .+ = ( +g ` R ) |
||
mdetuni.tg | |- .x. = ( .r ` R ) |
||
mdetuni.n | |- ( ph -> N e. Fin ) |
||
mdetuni.r | |- ( ph -> R e. Ring ) |
||
mdetuni.ff | |- ( ph -> D : B --> K ) |
||
mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
mdetuni.e | |- E = ( N maDet R ) |
||
mdetuni.cr | |- ( ph -> R e. CRing ) |
||
mdetuni.f | |- ( ph -> F e. B ) |
||
mdetuni.no | |- ( ph -> ( D ` ( 1r ` A ) ) = .1. ) |
||
Assertion | mdetuni | |- ( ph -> ( D ` F ) = ( E ` F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetuni.a | |- A = ( N Mat R ) |
|
2 | mdetuni.b | |- B = ( Base ` A ) |
|
3 | mdetuni.k | |- K = ( Base ` R ) |
|
4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
14 | mdetuni.e | |- E = ( N maDet R ) |
|
15 | mdetuni.cr | |- ( ph -> R e. CRing ) |
|
16 | mdetuni.f | |- ( ph -> F e. B ) |
|
17 | mdetuni.no | |- ( ph -> ( D ` ( 1r ` A ) ) = .1. ) |
|
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | mdetuni0 | |- ( ph -> ( D ` F ) = ( ( D ` ( 1r ` A ) ) .x. ( E ` F ) ) ) |
19 | 17 | oveq1d | |- ( ph -> ( ( D ` ( 1r ` A ) ) .x. ( E ` F ) ) = ( .1. .x. ( E ` F ) ) ) |
20 | 14 1 2 3 | mdetcl | |- ( ( R e. CRing /\ F e. B ) -> ( E ` F ) e. K ) |
21 | 15 16 20 | syl2anc | |- ( ph -> ( E ` F ) e. K ) |
22 | 3 7 5 | ringlidm | |- ( ( R e. Ring /\ ( E ` F ) e. K ) -> ( .1. .x. ( E ` F ) ) = ( E ` F ) ) |
23 | 9 21 22 | syl2anc | |- ( ph -> ( .1. .x. ( E ` F ) ) = ( E ` F ) ) |
24 | 18 19 23 | 3eqtrd | |- ( ph -> ( D ` F ) = ( E ` F ) ) |