| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetuni.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetuni.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | mdetuni.0g |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdetuni.1r |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | mdetuni.pg |  |-  .+ = ( +g ` R ) | 
						
							| 7 |  | mdetuni.tg |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetuni.n |  |-  ( ph -> N e. Fin ) | 
						
							| 9 |  | mdetuni.r |  |-  ( ph -> R e. Ring ) | 
						
							| 10 |  | mdetuni.ff |  |-  ( ph -> D : B --> K ) | 
						
							| 11 |  | mdetuni.al |  |-  ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) | 
						
							| 12 |  | mdetuni.li |  |-  ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 13 |  | mdetuni.sc |  |-  ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 14 |  | simpr3 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F =/= G ) | 
						
							| 15 |  | simpl3 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. w e. N ( F E w ) = ( G E w ) ) | 
						
							| 16 |  | neeq2 |  |-  ( z = G -> ( F =/= z <-> F =/= G ) ) | 
						
							| 17 |  | oveq1 |  |-  ( z = G -> ( z E w ) = ( G E w ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( z = G -> ( ( F E w ) = ( z E w ) <-> ( F E w ) = ( G E w ) ) ) | 
						
							| 19 | 18 | ralbidv |  |-  ( z = G -> ( A. w e. N ( F E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( G E w ) ) ) | 
						
							| 20 | 16 19 | anbi12d |  |-  ( z = G -> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) <-> ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) ) ) | 
						
							| 21 | 20 | imbi1d |  |-  ( z = G -> ( ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) ) | 
						
							| 22 |  | simpl2 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> E e. B ) | 
						
							| 23 |  | simpr1 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F e. N ) | 
						
							| 24 |  | simpl1 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ph ) | 
						
							| 25 | 24 11 | syl |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) | 
						
							| 26 |  | oveq |  |-  ( x = E -> ( y x w ) = ( y E w ) ) | 
						
							| 27 |  | oveq |  |-  ( x = E -> ( z x w ) = ( z E w ) ) | 
						
							| 28 | 26 27 | eqeq12d |  |-  ( x = E -> ( ( y x w ) = ( z x w ) <-> ( y E w ) = ( z E w ) ) ) | 
						
							| 29 | 28 | ralbidv |  |-  ( x = E -> ( A. w e. N ( y x w ) = ( z x w ) <-> A. w e. N ( y E w ) = ( z E w ) ) ) | 
						
							| 30 | 29 | anbi2d |  |-  ( x = E -> ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) <-> ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( x = E -> ( ( D ` x ) = .0. <-> ( D ` E ) = .0. ) ) | 
						
							| 32 | 30 31 | imbi12d |  |-  ( x = E -> ( ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) | 
						
							| 33 | 32 | ralbidv |  |-  ( x = E -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) | 
						
							| 34 |  | neeq1 |  |-  ( y = F -> ( y =/= z <-> F =/= z ) ) | 
						
							| 35 |  | oveq1 |  |-  ( y = F -> ( y E w ) = ( F E w ) ) | 
						
							| 36 | 35 | eqeq1d |  |-  ( y = F -> ( ( y E w ) = ( z E w ) <-> ( F E w ) = ( z E w ) ) ) | 
						
							| 37 | 36 | ralbidv |  |-  ( y = F -> ( A. w e. N ( y E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( z E w ) ) ) | 
						
							| 38 | 34 37 | anbi12d |  |-  ( y = F -> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) <-> ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) ) ) | 
						
							| 39 | 38 | imbi1d |  |-  ( y = F -> ( ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) | 
						
							| 40 | 39 | ralbidv |  |-  ( y = F -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) | 
						
							| 41 | 33 40 | rspc2va |  |-  ( ( ( E e. B /\ F e. N ) /\ A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) | 
						
							| 42 | 22 23 25 41 | syl21anc |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) | 
						
							| 43 |  | simpr2 |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> G e. N ) | 
						
							| 44 | 21 42 43 | rspcdva |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) | 
						
							| 45 | 14 15 44 | mp2and |  |-  ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( D ` E ) = .0. ) |