Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
14 |
|
simpr3 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F =/= G ) |
15 |
|
simpl3 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. w e. N ( F E w ) = ( G E w ) ) |
16 |
|
neeq2 |
|- ( z = G -> ( F =/= z <-> F =/= G ) ) |
17 |
|
oveq1 |
|- ( z = G -> ( z E w ) = ( G E w ) ) |
18 |
17
|
eqeq2d |
|- ( z = G -> ( ( F E w ) = ( z E w ) <-> ( F E w ) = ( G E w ) ) ) |
19 |
18
|
ralbidv |
|- ( z = G -> ( A. w e. N ( F E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( G E w ) ) ) |
20 |
16 19
|
anbi12d |
|- ( z = G -> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) <-> ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) ) ) |
21 |
20
|
imbi1d |
|- ( z = G -> ( ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) ) |
22 |
|
simpl2 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> E e. B ) |
23 |
|
simpr1 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F e. N ) |
24 |
|
simpl1 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ph ) |
25 |
24 11
|
syl |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
26 |
|
oveq |
|- ( x = E -> ( y x w ) = ( y E w ) ) |
27 |
|
oveq |
|- ( x = E -> ( z x w ) = ( z E w ) ) |
28 |
26 27
|
eqeq12d |
|- ( x = E -> ( ( y x w ) = ( z x w ) <-> ( y E w ) = ( z E w ) ) ) |
29 |
28
|
ralbidv |
|- ( x = E -> ( A. w e. N ( y x w ) = ( z x w ) <-> A. w e. N ( y E w ) = ( z E w ) ) ) |
30 |
29
|
anbi2d |
|- ( x = E -> ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) <-> ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) ) ) |
31 |
|
fveqeq2 |
|- ( x = E -> ( ( D ` x ) = .0. <-> ( D ` E ) = .0. ) ) |
32 |
30 31
|
imbi12d |
|- ( x = E -> ( ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
33 |
32
|
ralbidv |
|- ( x = E -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
34 |
|
neeq1 |
|- ( y = F -> ( y =/= z <-> F =/= z ) ) |
35 |
|
oveq1 |
|- ( y = F -> ( y E w ) = ( F E w ) ) |
36 |
35
|
eqeq1d |
|- ( y = F -> ( ( y E w ) = ( z E w ) <-> ( F E w ) = ( z E w ) ) ) |
37 |
36
|
ralbidv |
|- ( y = F -> ( A. w e. N ( y E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( z E w ) ) ) |
38 |
34 37
|
anbi12d |
|- ( y = F -> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) <-> ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) ) ) |
39 |
38
|
imbi1d |
|- ( y = F -> ( ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
40 |
39
|
ralbidv |
|- ( y = F -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
41 |
33 40
|
rspc2va |
|- ( ( ( E e. B /\ F e. N ) /\ A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
42 |
22 23 25 41
|
syl21anc |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
43 |
|
simpr2 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> G e. N ) |
44 |
21 42 43
|
rspcdva |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) |
45 |
14 15 44
|
mp2and |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( D ` E ) = .0. ) |