Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
14 |
|
mdetunilem2.ph |
|- ( ps -> ph ) |
15 |
|
mdetunilem2.eg |
|- ( ps -> ( E e. N /\ G e. N /\ E =/= G ) ) |
16 |
|
mdetunilem2.f |
|- ( ( ps /\ b e. N ) -> F e. K ) |
17 |
|
mdetunilem2.h |
|- ( ( ps /\ a e. N /\ b e. N ) -> H e. K ) |
18 |
14 8
|
syl |
|- ( ps -> N e. Fin ) |
19 |
14 9
|
syl |
|- ( ps -> R e. Ring ) |
20 |
16
|
3adant2 |
|- ( ( ps /\ a e. N /\ b e. N ) -> F e. K ) |
21 |
20 17
|
ifcld |
|- ( ( ps /\ a e. N /\ b e. N ) -> if ( a = G , F , H ) e. K ) |
22 |
20 21
|
ifcld |
|- ( ( ps /\ a e. N /\ b e. N ) -> if ( a = E , F , if ( a = G , F , H ) ) e. K ) |
23 |
1 3 2 18 19 22
|
matbas2d |
|- ( ps -> ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) e. B ) |
24 |
|
eqidd |
|- ( ( ps /\ w e. N ) -> ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) = ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) |
25 |
|
iftrue |
|- ( a = E -> if ( a = E , F , if ( a = G , F , H ) ) = F ) |
26 |
|
csbeq1a |
|- ( b = w -> F = [_ w / b ]_ F ) |
27 |
25 26
|
sylan9eq |
|- ( ( a = E /\ b = w ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
28 |
27
|
adantl |
|- ( ( ( ps /\ w e. N ) /\ ( a = E /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
29 |
|
eqidd |
|- ( ( ( ps /\ w e. N ) /\ a = E ) -> N = N ) |
30 |
15
|
simp1d |
|- ( ps -> E e. N ) |
31 |
30
|
adantr |
|- ( ( ps /\ w e. N ) -> E e. N ) |
32 |
|
simpr |
|- ( ( ps /\ w e. N ) -> w e. N ) |
33 |
|
nfv |
|- F/ b ( ps /\ w e. N ) |
34 |
|
nfcsb1v |
|- F/_ b [_ w / b ]_ F |
35 |
34
|
nfel1 |
|- F/ b [_ w / b ]_ F e. K |
36 |
33 35
|
nfim |
|- F/ b ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) |
37 |
|
eleq1w |
|- ( b = w -> ( b e. N <-> w e. N ) ) |
38 |
37
|
anbi2d |
|- ( b = w -> ( ( ps /\ b e. N ) <-> ( ps /\ w e. N ) ) ) |
39 |
26
|
eleq1d |
|- ( b = w -> ( F e. K <-> [_ w / b ]_ F e. K ) ) |
40 |
38 39
|
imbi12d |
|- ( b = w -> ( ( ( ps /\ b e. N ) -> F e. K ) <-> ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) ) ) |
41 |
36 40 16
|
chvarfv |
|- ( ( ps /\ w e. N ) -> [_ w / b ]_ F e. K ) |
42 |
|
nfv |
|- F/ a ( ps /\ w e. N ) |
43 |
|
nfcv |
|- F/_ b E |
44 |
|
nfcv |
|- F/_ a w |
45 |
|
nfcv |
|- F/_ a [_ w / b ]_ F |
46 |
24 28 29 31 32 41 42 33 43 44 45 34
|
ovmpodxf |
|- ( ( ps /\ w e. N ) -> ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = [_ w / b ]_ F ) |
47 |
15
|
simp3d |
|- ( ps -> E =/= G ) |
48 |
47
|
adantr |
|- ( ( ps /\ w e. N ) -> E =/= G ) |
49 |
|
neeq2 |
|- ( a = G -> ( E =/= a <-> E =/= G ) ) |
50 |
48 49
|
syl5ibrcom |
|- ( ( ps /\ w e. N ) -> ( a = G -> E =/= a ) ) |
51 |
50
|
imp |
|- ( ( ( ps /\ w e. N ) /\ a = G ) -> E =/= a ) |
52 |
51
|
necomd |
|- ( ( ( ps /\ w e. N ) /\ a = G ) -> a =/= E ) |
53 |
52
|
neneqd |
|- ( ( ( ps /\ w e. N ) /\ a = G ) -> -. a = E ) |
54 |
53
|
adantrr |
|- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> -. a = E ) |
55 |
54
|
iffalsed |
|- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = if ( a = G , F , H ) ) |
56 |
|
iftrue |
|- ( a = G -> if ( a = G , F , H ) = F ) |
57 |
56 26
|
sylan9eq |
|- ( ( a = G /\ b = w ) -> if ( a = G , F , H ) = [_ w / b ]_ F ) |
58 |
57
|
adantl |
|- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = G , F , H ) = [_ w / b ]_ F ) |
59 |
55 58
|
eqtrd |
|- ( ( ( ps /\ w e. N ) /\ ( a = G /\ b = w ) ) -> if ( a = E , F , if ( a = G , F , H ) ) = [_ w / b ]_ F ) |
60 |
|
eqidd |
|- ( ( ( ps /\ w e. N ) /\ a = G ) -> N = N ) |
61 |
15
|
simp2d |
|- ( ps -> G e. N ) |
62 |
61
|
adantr |
|- ( ( ps /\ w e. N ) -> G e. N ) |
63 |
|
nfcv |
|- F/_ b G |
64 |
24 59 60 62 32 41 42 33 63 44 45 34
|
ovmpodxf |
|- ( ( ps /\ w e. N ) -> ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = [_ w / b ]_ F ) |
65 |
46 64
|
eqtr4d |
|- ( ( ps /\ w e. N ) -> ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) |
66 |
65
|
ralrimiva |
|- ( ps -> A. w e. N ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) |
67 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem1 |
|- ( ( ( ph /\ ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) e. B /\ A. w e. N ( E ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) = ( G ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) w ) ) /\ ( E e. N /\ G e. N /\ E =/= G ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) = .0. ) |
68 |
14 23 66 15 67
|
syl31anc |
|- ( ps -> ( D ` ( a e. N , b e. N |-> if ( a = E , F , if ( a = G , F , H ) ) ) ) = .0. ) |