| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetuni.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetuni.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | mdetuni.0g |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdetuni.1r |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | mdetuni.pg |  |-  .+ = ( +g ` R ) | 
						
							| 7 |  | mdetuni.tg |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetuni.n |  |-  ( ph -> N e. Fin ) | 
						
							| 9 |  | mdetuni.r |  |-  ( ph -> R e. Ring ) | 
						
							| 10 |  | mdetuni.ff |  |-  ( ph -> D : B --> K ) | 
						
							| 11 |  | mdetuni.al |  |-  ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) | 
						
							| 12 |  | mdetuni.li |  |-  ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) | 
						
							| 13 |  | mdetuni.sc |  |-  ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 14 |  | simp32 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) | 
						
							| 15 |  | simp33 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 16 |  | simp1 |  |-  ( ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> H e. N ) | 
						
							| 17 |  | simp23 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> G e. B ) | 
						
							| 18 |  | simp3 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> H e. N ) | 
						
							| 19 |  | simp21 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> E e. B ) | 
						
							| 20 |  | simp22 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> F e. K ) | 
						
							| 21 | 13 | 3ad2ant1 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 22 |  | reseq1 |  |-  ( x = E -> ( x |` ( { w } X. N ) ) = ( E |` ( { w } X. N ) ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( x = E -> ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) | 
						
							| 24 |  | reseq1 |  |-  ( x = E -> ( x |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { w } ) X. N ) ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( x = E -> ( ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 26 | 23 25 | anbi12d |  |-  ( x = E -> ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 27 |  | fveqeq2 |  |-  ( x = E -> ( ( D ` x ) = ( y .x. ( D ` z ) ) <-> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) | 
						
							| 28 | 26 27 | imbi12d |  |-  ( x = E -> ( ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) ) | 
						
							| 29 | 28 | 2ralbidv |  |-  ( x = E -> ( A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) ) ) | 
						
							| 30 |  | sneq |  |-  ( y = F -> { y } = { F } ) | 
						
							| 31 | 30 | xpeq2d |  |-  ( y = F -> ( ( { w } X. N ) X. { y } ) = ( ( { w } X. N ) X. { F } ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( y = F -> ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( y = F -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) ) ) | 
						
							| 34 | 33 | anbi1d |  |-  ( y = F -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( y = F -> ( y .x. ( D ` z ) ) = ( F .x. ( D ` z ) ) ) | 
						
							| 36 | 35 | eqeq2d |  |-  ( y = F -> ( ( D ` E ) = ( y .x. ( D ` z ) ) <-> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) | 
						
							| 37 | 34 36 | imbi12d |  |-  ( y = F -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) ) | 
						
							| 38 | 37 | 2ralbidv |  |-  ( y = F -> ( A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( y .x. ( D ` z ) ) ) <-> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) ) | 
						
							| 39 | 29 38 | rspc2va |  |-  ( ( ( E e. B /\ F e. K ) /\ A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) | 
						
							| 40 | 19 20 21 39 | syl21anc |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) | 
						
							| 41 |  | reseq1 |  |-  ( z = G -> ( z |` ( { w } X. N ) ) = ( G |` ( { w } X. N ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( z = G -> ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) ) | 
						
							| 43 | 42 | eqeq2d |  |-  ( z = G -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) <-> ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) ) ) | 
						
							| 44 |  | reseq1 |  |-  ( z = G -> ( z |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) | 
						
							| 45 | 44 | eqeq2d |  |-  ( z = G -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) | 
						
							| 46 | 43 45 | anbi12d |  |-  ( z = G -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) ) ) | 
						
							| 47 |  | fveq2 |  |-  ( z = G -> ( D ` z ) = ( D ` G ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( z = G -> ( F .x. ( D ` z ) ) = ( F .x. ( D ` G ) ) ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( z = G -> ( ( D ` E ) = ( F .x. ( D ` z ) ) <-> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) | 
						
							| 50 | 46 49 | imbi12d |  |-  ( z = G -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) <-> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) ) | 
						
							| 51 |  | sneq |  |-  ( w = H -> { w } = { H } ) | 
						
							| 52 | 51 | xpeq1d |  |-  ( w = H -> ( { w } X. N ) = ( { H } X. N ) ) | 
						
							| 53 | 52 | reseq2d |  |-  ( w = H -> ( E |` ( { w } X. N ) ) = ( E |` ( { H } X. N ) ) ) | 
						
							| 54 | 52 | xpeq1d |  |-  ( w = H -> ( ( { w } X. N ) X. { F } ) = ( ( { H } X. N ) X. { F } ) ) | 
						
							| 55 | 52 | reseq2d |  |-  ( w = H -> ( G |` ( { w } X. N ) ) = ( G |` ( { H } X. N ) ) ) | 
						
							| 56 | 54 55 | oveq12d |  |-  ( w = H -> ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) | 
						
							| 57 | 53 56 | eqeq12d |  |-  ( w = H -> ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) <-> ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) ) ) | 
						
							| 58 | 51 | difeq2d |  |-  ( w = H -> ( N \ { w } ) = ( N \ { H } ) ) | 
						
							| 59 | 58 | xpeq1d |  |-  ( w = H -> ( ( N \ { w } ) X. N ) = ( ( N \ { H } ) X. N ) ) | 
						
							| 60 | 59 | reseq2d |  |-  ( w = H -> ( E |` ( ( N \ { w } ) X. N ) ) = ( E |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 61 | 59 | reseq2d |  |-  ( w = H -> ( G |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) | 
						
							| 62 | 60 61 | eqeq12d |  |-  ( w = H -> ( ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) <-> ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) | 
						
							| 63 | 57 62 | anbi12d |  |-  ( w = H -> ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) <-> ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) ) | 
						
							| 64 | 63 | imbi1d |  |-  ( w = H -> ( ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( G |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( G |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) <-> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) ) | 
						
							| 65 | 50 64 | rspc2va |  |-  ( ( ( G e. B /\ H e. N ) /\ A. z e. B A. w e. N ( ( ( E |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { F } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( E |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` z ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) | 
						
							| 66 | 17 18 40 65 | syl21anc |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ H e. N ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) | 
						
							| 67 | 16 66 | syl3an3 |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( ( ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) ) | 
						
							| 68 | 14 15 67 | mp2and |  |-  ( ( ph /\ ( E e. B /\ F e. K /\ G e. B ) /\ ( H e. N /\ ( E |` ( { H } X. N ) ) = ( ( ( { H } X. N ) X. { F } ) oF .x. ( G |` ( { H } X. N ) ) ) /\ ( E |` ( ( N \ { H } ) X. N ) ) = ( G |` ( ( N \ { H } ) X. N ) ) ) ) -> ( D ` E ) = ( F .x. ( D ` G ) ) ) |