Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
14 |
|
fveq1 |
|- ( c = d -> ( c ` a ) = ( d ` a ) ) |
15 |
14
|
oveq1d |
|- ( c = d -> ( ( c ` a ) F b ) = ( ( d ` a ) F b ) ) |
16 |
15
|
mpoeq3dv |
|- ( c = d -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) |
17 |
16
|
fveq2d |
|- ( c = d -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) |
18 |
|
fveq2 |
|- ( c = d -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) |
19 |
18
|
oveq1d |
|- ( c = d -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) |
20 |
17 19
|
eqeq12d |
|- ( c = d -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
21 |
|
fveq1 |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( c ` a ) = ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) ) |
22 |
21
|
oveq1d |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( c ` a ) F b ) = ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) |
23 |
22
|
mpoeq3dv |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) |
24 |
23
|
fveq2d |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) ) |
25 |
|
fveq2 |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) ) |
26 |
25
|
oveq1d |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
27 |
24 26
|
eqeq12d |
|- ( c = ( d ( +g ` ( SymGrp ` N ) ) e ) -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) ) |
28 |
|
fveq1 |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( c ` a ) = ( ( 0g ` ( SymGrp ` N ) ) ` a ) ) |
29 |
28
|
oveq1d |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( c ` a ) F b ) = ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) |
30 |
29
|
mpoeq3dv |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) |
31 |
30
|
fveq2d |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) ) |
32 |
|
fveq2 |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) ) |
33 |
32
|
oveq1d |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) |
34 |
31 33
|
eqeq12d |
|- ( c = ( 0g ` ( SymGrp ` N ) ) -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) ) |
35 |
|
fveq1 |
|- ( c = E -> ( c ` a ) = ( E ` a ) ) |
36 |
35
|
oveq1d |
|- ( c = E -> ( ( c ` a ) F b ) = ( ( E ` a ) F b ) ) |
37 |
36
|
mpoeq3dv |
|- ( c = E -> ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) |
38 |
37
|
fveq2d |
|- ( c = E -> ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) ) |
39 |
|
fveq2 |
|- ( c = E -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) ) |
40 |
39
|
oveq1d |
|- ( c = E -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) |
41 |
38 40
|
eqeq12d |
|- ( c = E -> ( ( D ` ( a e. N , b e. N |-> ( ( c ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` c ) .x. ( D ` F ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) ) |
42 |
|
eqid |
|- ( 0g ` ( SymGrp ` N ) ) = ( 0g ` ( SymGrp ` N ) ) |
43 |
|
eqid |
|- ( +g ` ( SymGrp ` N ) ) = ( +g ` ( SymGrp ` N ) ) |
44 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
45 |
8
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> N e. Fin ) |
46 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
47 |
46
|
symggrp |
|- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
48 |
|
grpmnd |
|- ( ( SymGrp ` N ) e. Grp -> ( SymGrp ` N ) e. Mnd ) |
49 |
45 47 48
|
3syl |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( SymGrp ` N ) e. Mnd ) |
50 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
51 |
50 46 44
|
symgtrf |
|- ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
52 |
51
|
a1i |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) ) |
53 |
|
eqid |
|- ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) = ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) |
54 |
50 46 44 53
|
symggen2 |
|- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) = ( Base ` ( SymGrp ` N ) ) ) |
55 |
8 54
|
syl |
|- ( ph -> ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) = ( Base ` ( SymGrp ` N ) ) ) |
56 |
55
|
eqcomd |
|- ( ph -> ( Base ` ( SymGrp ` N ) ) = ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) ) |
57 |
56
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( ( mrCls ` ( SubMnd ` ( SymGrp ` N ) ) ) ` ran ( pmTrsp ` N ) ) ) |
58 |
9
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> R e. Ring ) |
59 |
10
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> D : B --> K ) |
60 |
|
simp3 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F e. B ) |
61 |
59 60
|
ffvelrnd |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` F ) e. K ) |
62 |
3 7 5
|
ringlidm |
|- ( ( R e. Ring /\ ( D ` F ) e. K ) -> ( .1. .x. ( D ` F ) ) = ( D ` F ) ) |
63 |
58 61 62
|
syl2anc |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( .1. .x. ( D ` F ) ) = ( D ` F ) ) |
64 |
|
zrhpsgnmhm |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
65 |
9 8 64
|
syl2anc |
|- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
66 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
67 |
66 5
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
68 |
42 67
|
mhm0 |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
69 |
65 68
|
syl |
|- ( ph -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
70 |
69
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = .1. ) |
71 |
70
|
oveq1d |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) = ( .1. .x. ( D ` F ) ) ) |
72 |
46
|
symgid |
|- ( N e. Fin -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
73 |
8 72
|
syl |
|- ( ph -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
74 |
73
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
75 |
74
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
76 |
75
|
fveq1d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( _I |` N ) ` a ) = ( ( 0g ` ( SymGrp ` N ) ) ` a ) ) |
77 |
|
simp2 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> a e. N ) |
78 |
|
fvresi |
|- ( a e. N -> ( ( _I |` N ) ` a ) = a ) |
79 |
77 78
|
syl |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( _I |` N ) ` a ) = a ) |
80 |
76 79
|
eqtr3d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( 0g ` ( SymGrp ` N ) ) ` a ) = a ) |
81 |
80
|
oveq1d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ a e. N /\ b e. N ) -> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) = ( a F b ) ) |
82 |
81
|
mpoeq3dva |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) = ( a e. N , b e. N |-> ( a F b ) ) ) |
83 |
1 3 2
|
matbas2i |
|- ( F e. B -> F e. ( K ^m ( N X. N ) ) ) |
84 |
83
|
3ad2ant3 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F e. ( K ^m ( N X. N ) ) ) |
85 |
|
elmapi |
|- ( F e. ( K ^m ( N X. N ) ) -> F : ( N X. N ) --> K ) |
86 |
|
ffn |
|- ( F : ( N X. N ) --> K -> F Fn ( N X. N ) ) |
87 |
84 85 86
|
3syl |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F Fn ( N X. N ) ) |
88 |
|
fnov |
|- ( F Fn ( N X. N ) <-> F = ( a e. N , b e. N |-> ( a F b ) ) ) |
89 |
87 88
|
sylib |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F = ( a e. N , b e. N |-> ( a F b ) ) ) |
90 |
82 89
|
eqtr4d |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) = F ) |
91 |
90
|
fveq2d |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( D ` F ) ) |
92 |
63 71 91
|
3eqtr4rd |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( ( 0g ` ( SymGrp ` N ) ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) .x. ( D ` F ) ) ) |
93 |
|
simp2 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> d e. ( Base ` ( SymGrp ` N ) ) ) |
94 |
51
|
sseli |
|- ( e e. ran ( pmTrsp ` N ) -> e e. ( Base ` ( SymGrp ` N ) ) ) |
95 |
94
|
3ad2ant3 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( Base ` ( SymGrp ` N ) ) ) |
96 |
46 44 43
|
symgov |
|- ( ( d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ( Base ` ( SymGrp ` N ) ) ) -> ( d ( +g ` ( SymGrp ` N ) ) e ) = ( d o. e ) ) |
97 |
93 95 96
|
syl2anc |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( d ( +g ` ( SymGrp ` N ) ) e ) = ( d o. e ) ) |
98 |
97
|
fveq1d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( ( d o. e ) ` a ) ) |
99 |
98
|
3ad2ant1 |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( ( d o. e ) ` a ) ) |
100 |
46 44
|
symgbasf1o |
|- ( e e. ( Base ` ( SymGrp ` N ) ) -> e : N -1-1-onto-> N ) |
101 |
|
f1of |
|- ( e : N -1-1-onto-> N -> e : N --> N ) |
102 |
95 100 101
|
3syl |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e : N --> N ) |
103 |
102
|
3ad2ant1 |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> e : N --> N ) |
104 |
|
simp2 |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> a e. N ) |
105 |
|
fvco3 |
|- ( ( e : N --> N /\ a e. N ) -> ( ( d o. e ) ` a ) = ( d ` ( e ` a ) ) ) |
106 |
103 104 105
|
syl2anc |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d o. e ) ` a ) = ( d ` ( e ` a ) ) ) |
107 |
99 106
|
eqtrd |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) = ( d ` ( e ` a ) ) ) |
108 |
107
|
oveq1d |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ a e. N /\ b e. N ) -> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) = ( ( d ` ( e ` a ) ) F b ) ) |
109 |
108
|
mpoeq3dva |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) |
110 |
109
|
fveq2d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) ) |
111 |
46 44
|
symgbasf |
|- ( d e. ( Base ` ( SymGrp ` N ) ) -> d : N --> N ) |
112 |
|
eqid |
|- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
113 |
112 50
|
pmtrrn2 |
|- ( e e. ran ( pmTrsp ` N ) -> E. c e. N E. f e. N ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) ) |
114 |
|
simpll1 |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ph ) |
115 |
|
df-3an |
|- ( ( c e. N /\ f e. N /\ c =/= f ) <-> ( ( c e. N /\ f e. N ) /\ c =/= f ) ) |
116 |
115
|
biimpri |
|- ( ( ( c e. N /\ f e. N ) /\ c =/= f ) -> ( c e. N /\ f e. N /\ c =/= f ) ) |
117 |
116
|
adantl |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( c e. N /\ f e. N /\ c =/= f ) ) |
118 |
84 85
|
syl |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> F : ( N X. N ) --> K ) |
119 |
118
|
adantr |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> F : ( N X. N ) --> K ) |
120 |
119
|
ad2antrr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> F : ( N X. N ) --> K ) |
121 |
|
simpllr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> d : N --> N ) |
122 |
|
simprlr |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> f e. N ) |
123 |
122
|
adantr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> f e. N ) |
124 |
121 123
|
ffvelrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( d ` f ) e. N ) |
125 |
|
simpr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> b e. N ) |
126 |
120 124 125
|
fovrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( d ` f ) F b ) e. K ) |
127 |
|
simprll |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c e. N ) |
128 |
127
|
adantr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> c e. N ) |
129 |
121 128
|
ffvelrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( d ` c ) e. N ) |
130 |
120 129 125
|
fovrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( d ` c ) F b ) e. K ) |
131 |
126 130
|
jca |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ b e. N ) -> ( ( ( d ` f ) F b ) e. K /\ ( ( d ` c ) F b ) e. K ) ) |
132 |
118
|
ad2antrr |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> F : ( N X. N ) --> K ) |
133 |
132
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> F : ( N X. N ) --> K ) |
134 |
|
simp1lr |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> d : N --> N ) |
135 |
|
simp2 |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> a e. N ) |
136 |
134 135
|
ffvelrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( d ` a ) e. N ) |
137 |
|
simp3 |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> b e. N ) |
138 |
133 136 137
|
fovrnd |
|- ( ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( ( d ` a ) F b ) e. K ) |
139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 114 117 131 138
|
mdetunilem6 |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) ) |
140 |
|
simpl1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ph ) |
141 |
|
fveq2 |
|- ( a = c -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) ) |
142 |
8
|
adantr |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> N e. Fin ) |
143 |
|
simprll |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c e. N ) |
144 |
|
simprlr |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> f e. N ) |
145 |
|
simprr |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> c =/= f ) |
146 |
112
|
pmtrprfv |
|- ( ( N e. Fin /\ ( c e. N /\ f e. N /\ c =/= f ) ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
147 |
142 143 144 145 146
|
syl13anc |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
148 |
147
|
adantr |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` c ) = f ) |
149 |
141 148
|
sylan9eqr |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = f ) |
150 |
149
|
fveq2d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` f ) ) |
151 |
150
|
oveq1d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` f ) F b ) ) |
152 |
|
iftrue |
|- ( a = c -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` f ) F b ) ) |
153 |
152
|
adantl |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` f ) F b ) ) |
154 |
151 153
|
eqtr4d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
155 |
|
fveq2 |
|- ( a = f -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) ) |
156 |
|
prcom |
|- { c , f } = { f , c } |
157 |
156
|
fveq2i |
|- ( ( pmTrsp ` N ) ` { c , f } ) = ( ( pmTrsp ` N ) ` { f , c } ) |
158 |
157
|
fveq1i |
|- ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) = ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) |
159 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> N e. Fin ) |
160 |
|
simplrl |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( c e. N /\ f e. N ) ) |
161 |
160
|
simprd |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> f e. N ) |
162 |
160
|
simpld |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> c e. N ) |
163 |
|
simplrr |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> c =/= f ) |
164 |
163
|
necomd |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> f =/= c ) |
165 |
112
|
pmtrprfv |
|- ( ( N e. Fin /\ ( f e. N /\ c e. N /\ f =/= c ) ) -> ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) = c ) |
166 |
159 161 162 164 165
|
syl13anc |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { f , c } ) ` f ) = c ) |
167 |
158 166
|
syl5eq |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` f ) = c ) |
168 |
155 167
|
sylan9eqr |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = c ) |
169 |
168
|
fveq2d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` c ) ) |
170 |
169
|
oveq1d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` c ) F b ) ) |
171 |
|
iftrue |
|- ( a = f -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` c ) F b ) ) |
172 |
171
|
adantl |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` c ) F b ) ) |
173 |
170 172
|
eqtr4d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
174 |
173
|
adantlr |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
175 |
|
vex |
|- a e. _V |
176 |
175
|
elpr |
|- ( a e. { c , f } <-> ( a = c \/ a = f ) ) |
177 |
176
|
notbii |
|- ( -. a e. { c , f } <-> -. ( a = c \/ a = f ) ) |
178 |
|
ioran |
|- ( -. ( a = c \/ a = f ) <-> ( -. a = c /\ -. a = f ) ) |
179 |
177 178
|
sylbbr |
|- ( ( -. a = c /\ -. a = f ) -> -. a e. { c , f } ) |
180 |
179
|
adantll |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> -. a e. { c , f } ) |
181 |
|
prssi |
|- ( ( c e. N /\ f e. N ) -> { c , f } C_ N ) |
182 |
160 181
|
syl |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> { c , f } C_ N ) |
183 |
|
pr2ne |
|- ( ( c e. N /\ f e. N ) -> ( { c , f } ~~ 2o <-> c =/= f ) ) |
184 |
160 183
|
syl |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( { c , f } ~~ 2o <-> c =/= f ) ) |
185 |
163 184
|
mpbird |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> { c , f } ~~ 2o ) |
186 |
112
|
pmtrmvd |
|- ( ( N e. Fin /\ { c , f } C_ N /\ { c , f } ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) = { c , f } ) |
187 |
159 182 185 186
|
syl3anc |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) = { c , f } ) |
188 |
187
|
eleq2d |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> a e. { c , f } ) ) |
189 |
188
|
notbid |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> -. a e. { c , f } ) ) |
190 |
189
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> -. a e. { c , f } ) ) |
191 |
180 190
|
mpbird |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) |
192 |
112
|
pmtrf |
|- ( ( N e. Fin /\ { c , f } C_ N /\ { c , f } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { c , f } ) : N --> N ) |
193 |
159 182 185 192
|
syl3anc |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( pmTrsp ` N ) ` { c , f } ) : N --> N ) |
194 |
193
|
ffnd |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( pmTrsp ` N ) ` { c , f } ) Fn N ) |
195 |
|
simpr |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> a e. N ) |
196 |
|
fnelnfp |
|- ( ( ( ( pmTrsp ` N ) ` { c , f } ) Fn N /\ a e. N ) -> ( a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) =/= a ) ) |
197 |
196
|
necon2bbid |
|- ( ( ( ( pmTrsp ` N ) ` { c , f } ) Fn N /\ a e. N ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
198 |
194 195 197
|
syl2anc |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
199 |
198
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a <-> -. a e. dom ( ( ( pmTrsp ` N ) ` { c , f } ) \ _I ) ) ) |
200 |
191 199
|
mpbird |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) = a ) |
201 |
200
|
fveq2d |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) = ( d ` a ) ) |
202 |
201
|
oveq1d |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = ( ( d ` a ) F b ) ) |
203 |
|
iffalse |
|- ( -. a = f -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
204 |
203
|
adantl |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
205 |
202 204
|
eqtr4d |
|- ( ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) /\ -. a = f ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
206 |
174 205
|
pm2.61dan |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
207 |
|
iffalse |
|- ( -. a = c -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
208 |
207
|
adantl |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) |
209 |
206 208
|
eqtr4d |
|- ( ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) /\ -. a = c ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
210 |
154 209
|
pm2.61dan |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
211 |
210
|
3adant3 |
|- ( ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) /\ a e. N /\ b e. N ) -> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) = if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) |
212 |
211
|
mpoeq3dva |
|- ( ( ph /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
213 |
140 212
|
sylan |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
214 |
213
|
fveq2d |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` f ) F b ) , if ( a = f , ( ( d ` c ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) |
215 |
|
fveq2 |
|- ( a = c -> ( d ` a ) = ( d ` c ) ) |
216 |
215
|
oveq1d |
|- ( a = c -> ( ( d ` a ) F b ) = ( ( d ` c ) F b ) ) |
217 |
|
iftrue |
|- ( a = c -> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) = ( ( d ` c ) F b ) ) |
218 |
216 217
|
eqtr4d |
|- ( a = c -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
219 |
|
fveq2 |
|- ( a = f -> ( d ` a ) = ( d ` f ) ) |
220 |
219
|
oveq1d |
|- ( a = f -> ( ( d ` a ) F b ) = ( ( d ` f ) F b ) ) |
221 |
|
iftrue |
|- ( a = f -> if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` f ) F b ) ) |
222 |
220 221
|
eqtr4d |
|- ( a = f -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
223 |
222
|
adantl |
|- ( ( -. a = c /\ a = f ) -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
224 |
|
iffalse |
|- ( -. a = f -> if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) = ( ( d ` a ) F b ) ) |
225 |
224
|
eqcomd |
|- ( -. a = f -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
226 |
225
|
adantl |
|- ( ( -. a = c /\ -. a = f ) -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
227 |
223 226
|
pm2.61dan |
|- ( -. a = c -> ( ( d ` a ) F b ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
228 |
|
iffalse |
|- ( -. a = c -> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) = if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
229 |
227 228
|
eqtr4d |
|- ( -. a = c -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
230 |
218 229
|
pm2.61i |
|- ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) |
231 |
230
|
a1i |
|- ( ( a e. N /\ b e. N ) -> ( ( d ` a ) F b ) = if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
232 |
231
|
mpoeq3ia |
|- ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) = ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) |
233 |
232
|
fveq2i |
|- ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) |
234 |
233
|
fveq2i |
|- ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) |
235 |
234
|
a1i |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> if ( a = c , ( ( d ` c ) F b ) , if ( a = f , ( ( d ` f ) F b ) , ( ( d ` a ) F b ) ) ) ) ) ) ) |
236 |
139 214 235
|
3eqtr4d |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
237 |
|
fveq1 |
|- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( e ` a ) = ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) |
238 |
237
|
fveq2d |
|- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( d ` ( e ` a ) ) = ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) ) |
239 |
238
|
oveq1d |
|- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( ( d ` ( e ` a ) ) F b ) = ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) |
240 |
239
|
mpoeq3dv |
|- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) = ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) |
241 |
240
|
fveqeq2d |
|- ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) <-> ( D ` ( a e. N , b e. N |-> ( ( d ` ( ( ( pmTrsp ` N ) ` { c , f } ) ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
242 |
236 241
|
syl5ibrcom |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( ( c e. N /\ f e. N ) /\ c =/= f ) ) -> ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
243 |
242
|
expr |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( c e. N /\ f e. N ) ) -> ( c =/= f -> ( e = ( ( pmTrsp ` N ) ` { c , f } ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) ) |
244 |
243
|
impd |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) /\ ( c e. N /\ f e. N ) ) -> ( ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
245 |
244
|
rexlimdvva |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ( E. c e. N E. f e. N ( c =/= f /\ e = ( ( pmTrsp ` N ) ` { c , f } ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
246 |
113 245
|
syl5 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N ) -> ( e e. ran ( pmTrsp ` N ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) ) |
247 |
246
|
3impia |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d : N --> N /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
248 |
111 247
|
syl3an2 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( d ` ( e ` a ) ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
249 |
110 248
|
eqtrd |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
250 |
249
|
adantr |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) ) |
251 |
|
fveq2 |
|- ( ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
252 |
251
|
adantl |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( ( invg ` R ) ` ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
253 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
254 |
58
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> R e. Ring ) |
255 |
65
|
3ad2ant1 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
256 |
255
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
257 |
66 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
258 |
44 257
|
mhmf |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
259 |
256 258
|
syl |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
260 |
259 93
|
ffvelrnd |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) e. K ) |
261 |
59
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> D : B --> K ) |
262 |
|
simp13 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> F e. B ) |
263 |
261 262
|
ffvelrnd |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( D ` F ) e. K ) |
264 |
3 7 253 254 260 263
|
ringmneg1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) .x. ( D ` F ) ) = ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) ) |
265 |
66 7
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
266 |
44 43 265
|
mhmlin |
|- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) ) |
267 |
256 93 95 266
|
syl3anc |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) ) |
268 |
45
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> N e. Fin ) |
269 |
|
simp3 |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ran ( pmTrsp ` N ) ) |
270 |
46 44 50
|
pmtrodpm |
|- ( ( N e. Fin /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
271 |
268 269 270
|
syl2anc |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
272 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
273 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
274 |
272 273 5 44 253
|
zrhpsgnodpm |
|- ( ( R e. Ring /\ N e. Fin /\ e e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) = ( ( invg ` R ) ` .1. ) ) |
275 |
254 268 271 274
|
syl3anc |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) = ( ( invg ` R ) ` .1. ) ) |
276 |
275
|
oveq2d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` e ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( invg ` R ) ` .1. ) ) ) |
277 |
3 7 5 253 254 260
|
rngnegr |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( ( invg ` R ) ` .1. ) ) = ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) ) |
278 |
267 276 277
|
3eqtrrd |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) ) |
279 |
278
|
oveq1d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( ( invg ` R ) ` ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) ) .x. ( D ` F ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
280 |
264 279
|
eqtr3d |
|- ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) -> ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
281 |
280
|
adantr |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( ( invg ` R ) ` ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
282 |
250 252 281
|
3eqtrd |
|- ( ( ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) /\ d e. ( Base ` ( SymGrp ` N ) ) /\ e e. ran ( pmTrsp ` N ) ) /\ ( D ` ( a e. N , b e. N |-> ( ( d ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` d ) .x. ( D ` F ) ) ) -> ( D ` ( a e. N , b e. N |-> ( ( ( d ( +g ` ( SymGrp ` N ) ) e ) ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( d ( +g ` ( SymGrp ` N ) ) e ) ) .x. ( D ` F ) ) ) |
283 |
|
simp2 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> E : N -1-1-onto-> N ) |
284 |
46 44
|
elsymgbas |
|- ( N e. Fin -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
285 |
45 284
|
syl |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
286 |
283 285
|
mpbird |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |
287 |
20 27 34 41 42 43 44 49 52 57 92 282 286
|
mndind |
|- ( ( ph /\ E : N -1-1-onto-> N /\ F e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) F b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` F ) ) ) |