| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
| 2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
| 3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
| 4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
| 5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
| 6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
| 7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
| 8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
| 9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
| 10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
| 11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
| 12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
| 13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
| 14 |
|
mdetunilem8.id |
|- ( ph -> ( D ` ( 1r ` A ) ) = .0. ) |
| 15 |
|
simpl |
|- ( ( ph /\ E : N -1-1-> N ) -> ph ) |
| 16 |
|
enrefg |
|- ( N e. Fin -> N ~~ N ) |
| 17 |
8 16
|
syl |
|- ( ph -> N ~~ N ) |
| 18 |
|
f1finf1o |
|- ( ( N ~~ N /\ N e. Fin ) -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) |
| 19 |
17 8 18
|
syl2anc |
|- ( ph -> ( E : N -1-1-> N <-> E : N -1-1-onto-> N ) ) |
| 20 |
19
|
biimpa |
|- ( ( ph /\ E : N -1-1-> N ) -> E : N -1-1-onto-> N ) |
| 21 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 22 |
8 9 21
|
syl2anc |
|- ( ph -> A e. Ring ) |
| 23 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
| 24 |
2 23
|
ringidcl |
|- ( A e. Ring -> ( 1r ` A ) e. B ) |
| 25 |
22 24
|
syl |
|- ( ph -> ( 1r ` A ) e. B ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ E : N -1-1-> N ) -> ( 1r ` A ) e. B ) |
| 27 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem7 |
|- ( ( ph /\ E : N -1-1-onto-> N /\ ( 1r ` A ) e. B ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) |
| 28 |
15 20 26 27
|
syl3anc |
|- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) ) |
| 29 |
8
|
adantr |
|- ( ( ph /\ E : N -1-1-> N ) -> N e. Fin ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> N e. Fin ) |
| 31 |
9
|
adantr |
|- ( ( ph /\ E : N -1-1-> N ) -> R e. Ring ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> R e. Ring ) |
| 33 |
|
simp1r |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N -1-1-> N ) |
| 34 |
|
f1f |
|- ( E : N -1-1-> N -> E : N --> N ) |
| 35 |
33 34
|
syl |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> E : N --> N ) |
| 36 |
|
simp2 |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> a e. N ) |
| 37 |
35 36
|
ffvelcdmd |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( E ` a ) e. N ) |
| 38 |
|
simp3 |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> b e. N ) |
| 39 |
1 5 4 30 32 37 38 23
|
mat1ov |
|- ( ( ( ph /\ E : N -1-1-> N ) /\ a e. N /\ b e. N ) -> ( ( E ` a ) ( 1r ` A ) b ) = if ( ( E ` a ) = b , .1. , .0. ) ) |
| 40 |
39
|
mpoeq3dva |
|- ( ( ph /\ E : N -1-1-> N ) -> ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) = ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 41 |
40
|
fveq2d |
|- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> ( ( E ` a ) ( 1r ` A ) b ) ) ) = ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 42 |
14
|
adantr |
|- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( 1r ` A ) ) = .0. ) |
| 43 |
42
|
oveq2d |
|- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) ) |
| 44 |
|
zrhpsgnmhm |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 45 |
9 8 44
|
syl2anc |
|- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 46 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
| 47 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 48 |
47 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
| 49 |
46 48
|
mhmf |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 50 |
45 49
|
syl |
|- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ E : N -1-1-> N ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 52 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
| 53 |
52 46
|
elsymgbas |
|- ( N e. Fin -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 54 |
29 53
|
syl |
|- ( ( ph /\ E : N -1-1-> N ) -> ( E e. ( Base ` ( SymGrp ` N ) ) <-> E : N -1-1-onto-> N ) ) |
| 55 |
20 54
|
mpbird |
|- ( ( ph /\ E : N -1-1-> N ) -> E e. ( Base ` ( SymGrp ` N ) ) ) |
| 56 |
51 55
|
ffvelcdmd |
|- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) |
| 57 |
3 7 4
|
ringrz |
|- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) |
| 58 |
31 56 57
|
syl2anc |
|- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. .0. ) = .0. ) |
| 59 |
43 58
|
eqtrd |
|- ( ( ph /\ E : N -1-1-> N ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` E ) .x. ( D ` ( 1r ` A ) ) ) = .0. ) |
| 60 |
28 41 59
|
3eqtr3d |
|- ( ( ph /\ E : N -1-1-> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |
| 61 |
60
|
ex |
|- ( ph -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 63 |
|
dff13 |
|- ( E : N -1-1-> N <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
| 64 |
|
ibar |
|- ( E : N --> N -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) |
| 65 |
64
|
adantl |
|- ( ( ph /\ E : N --> N ) -> ( A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( E : N --> N /\ A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) ) |
| 66 |
63 65
|
bitr4id |
|- ( ( ph /\ E : N --> N ) -> ( E : N -1-1-> N <-> A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
| 67 |
66
|
notbid |
|- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) ) |
| 68 |
|
rexnal |
|- ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
| 69 |
|
rexnal |
|- ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
| 70 |
|
df-ne |
|- ( c =/= d <-> -. c = d ) |
| 71 |
70
|
anbi2i |
|- ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) <-> ( ( E ` c ) = ( E ` d ) /\ -. c = d ) ) |
| 72 |
|
annim |
|- ( ( ( E ` c ) = ( E ` d ) /\ -. c = d ) <-> -. ( ( E ` c ) = ( E ` d ) -> c = d ) ) |
| 73 |
71 72
|
bitr2i |
|- ( -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 74 |
73
|
rexbii |
|- ( E. d e. N -. ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 75 |
69 74
|
bitr3i |
|- ( -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 76 |
75
|
rexbii |
|- ( E. c e. N -. A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 77 |
68 76
|
bitr3i |
|- ( -. A. c e. N A. d e. N ( ( E ` c ) = ( E ` d ) -> c = d ) <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) |
| 78 |
67 77
|
bitrdi |
|- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N <-> E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) |
| 79 |
|
simprrl |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( E ` c ) = ( E ` d ) ) |
| 80 |
|
fveqeq2 |
|- ( a = c -> ( ( E ` a ) = b <-> ( E ` c ) = b ) ) |
| 81 |
80
|
ifbid |
|- ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
| 82 |
|
iftrue |
|- ( a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
| 83 |
81 82
|
eqtr4d |
|- ( a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 84 |
|
fveqeq2 |
|- ( a = d -> ( ( E ` a ) = b <-> ( E ` d ) = b ) ) |
| 85 |
84
|
ifbid |
|- ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( ( E ` d ) = b , .1. , .0. ) ) |
| 86 |
|
iftrue |
|- ( a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` d ) = b , .1. , .0. ) ) |
| 87 |
85 86
|
eqtr4d |
|- ( a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 88 |
|
iffalse |
|- ( -. a = d -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( ( E ` a ) = b , .1. , .0. ) ) |
| 89 |
88
|
eqcomd |
|- ( -. a = d -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 90 |
87 89
|
pm2.61i |
|- if ( ( E ` a ) = b , .1. , .0. ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) |
| 91 |
|
iffalse |
|- ( -. a = c -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 92 |
90 91
|
eqtr4id |
|- ( -. a = c -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 93 |
83 92
|
pm2.61i |
|- if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 94 |
|
eqeq1 |
|- ( ( E ` d ) = ( E ` c ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) |
| 95 |
94
|
eqcoms |
|- ( ( E ` c ) = ( E ` d ) -> ( ( E ` d ) = b <-> ( E ` c ) = b ) ) |
| 96 |
95
|
ifbid |
|- ( ( E ` c ) = ( E ` d ) -> if ( ( E ` d ) = b , .1. , .0. ) = if ( ( E ` c ) = b , .1. , .0. ) ) |
| 97 |
96
|
ifeq1d |
|- ( ( E ` c ) = ( E ` d ) -> if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) = if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) |
| 98 |
97
|
ifeq2d |
|- ( ( E ` c ) = ( E ` d ) -> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` d ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 99 |
93 98
|
eqtrid |
|- ( ( E ` c ) = ( E ` d ) -> if ( ( E ` a ) = b , .1. , .0. ) = if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) |
| 100 |
99
|
mpoeq3dv |
|- ( ( E ` c ) = ( E ` d ) -> ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) = ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) |
| 101 |
100
|
fveq2d |
|- ( ( E ` c ) = ( E ` d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) |
| 102 |
79 101
|
syl |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) ) |
| 103 |
|
simpll |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ph ) |
| 104 |
|
simprll |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c e. N ) |
| 105 |
|
simprlr |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> d e. N ) |
| 106 |
|
simprrr |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> c =/= d ) |
| 107 |
104 105 106
|
3jca |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( c e. N /\ d e. N /\ c =/= d ) ) |
| 108 |
3 5
|
ringidcl |
|- ( R e. Ring -> .1. e. K ) |
| 109 |
9 108
|
syl |
|- ( ph -> .1. e. K ) |
| 110 |
3 4
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
| 111 |
9 110
|
syl |
|- ( ph -> .0. e. K ) |
| 112 |
109 111
|
ifcld |
|- ( ph -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) |
| 113 |
112
|
ad3antrrr |
|- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ b e. N ) -> if ( ( E ` c ) = b , .1. , .0. ) e. K ) |
| 114 |
|
simp1ll |
|- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> ph ) |
| 115 |
109 111
|
ifcld |
|- ( ph -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) |
| 116 |
114 115
|
syl |
|- ( ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) /\ a e. N /\ b e. N ) -> if ( ( E ` a ) = b , .1. , .0. ) e. K ) |
| 117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116
|
mdetunilem2 |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( a = c , if ( ( E ` c ) = b , .1. , .0. ) , if ( a = d , if ( ( E ` c ) = b , .1. , .0. ) , if ( ( E ` a ) = b , .1. , .0. ) ) ) ) ) = .0. ) |
| 118 |
102 117
|
eqtrd |
|- ( ( ( ph /\ E : N --> N ) /\ ( ( c e. N /\ d e. N ) /\ ( ( E ` c ) = ( E ` d ) /\ c =/= d ) ) ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |
| 119 |
118
|
expr |
|- ( ( ( ph /\ E : N --> N ) /\ ( c e. N /\ d e. N ) ) -> ( ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 120 |
119
|
rexlimdvva |
|- ( ( ph /\ E : N --> N ) -> ( E. c e. N E. d e. N ( ( E ` c ) = ( E ` d ) /\ c =/= d ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 121 |
78 120
|
sylbid |
|- ( ( ph /\ E : N --> N ) -> ( -. E : N -1-1-> N -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) ) |
| 122 |
62 121
|
pm2.61d |
|- ( ( ph /\ E : N --> N ) -> ( D ` ( a e. N , b e. N |-> if ( ( E ` a ) = b , .1. , .0. ) ) ) = .0. ) |