| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mdbr | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH B -> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							sseq1 | 
							 |-  ( x = C -> ( x C_ B <-> C C_ B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = C -> ( x vH A ) = ( C vH A ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq1d | 
							 |-  ( x = C -> ( ( x vH A ) i^i B ) = ( ( C vH A ) i^i B ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = C -> ( x vH ( A i^i B ) ) = ( C vH ( A i^i B ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeq12d | 
							 |-  ( x = C -> ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							imbi12d | 
							 |-  ( x = C -> ( ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) <-> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspcv | 
							 |-  ( C e. CH -> ( A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							sylan9 | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ C e. CH ) -> ( A MH B -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3impa | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A MH B -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imp32 | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) )  |