Step |
Hyp |
Ref |
Expression |
1 |
|
mdbr |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
2 |
1
|
biimpd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B -> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
3 |
|
sseq1 |
|- ( x = C -> ( x C_ B <-> C C_ B ) ) |
4 |
|
oveq1 |
|- ( x = C -> ( x vH A ) = ( C vH A ) ) |
5 |
4
|
ineq1d |
|- ( x = C -> ( ( x vH A ) i^i B ) = ( ( C vH A ) i^i B ) ) |
6 |
|
oveq1 |
|- ( x = C -> ( x vH ( A i^i B ) ) = ( C vH ( A i^i B ) ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = C -> ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) |
8 |
3 7
|
imbi12d |
|- ( x = C -> ( ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) <-> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) ) |
9 |
8
|
rspcv |
|- ( C e. CH -> ( A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) ) |
10 |
2 9
|
sylan9 |
|- ( ( ( A e. CH /\ B e. CH ) /\ C e. CH ) -> ( A MH B -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) ) |
11 |
10
|
3impa |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A MH B -> ( C C_ B -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) ) ) |
12 |
11
|
imp32 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) |