Description: A division law. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldiv.a | |- ( ph -> A e. CC ) |
|
ldiv.b | |- ( ph -> B e. CC ) |
||
ldiv.c | |- ( ph -> C e. CC ) |
||
mdiv.an0 | |- ( ph -> A =/= 0 ) |
||
mdiv.bn0 | |- ( ph -> B =/= 0 ) |
||
Assertion | mdiv | |- ( ph -> ( A = ( C / B ) <-> B = ( C / A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldiv.a | |- ( ph -> A e. CC ) |
|
2 | ldiv.b | |- ( ph -> B e. CC ) |
|
3 | ldiv.c | |- ( ph -> C e. CC ) |
|
4 | mdiv.an0 | |- ( ph -> A =/= 0 ) |
|
5 | mdiv.bn0 | |- ( ph -> B =/= 0 ) |
|
6 | 1 2 3 5 | ldiv | |- ( ph -> ( ( A x. B ) = C <-> A = ( C / B ) ) ) |
7 | 1 2 3 4 | rdiv | |- ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) ) |
8 | 6 7 | bitr3d | |- ( ph -> ( A = ( C / B ) <-> B = ( C / A ) ) ) |