Metamath Proof Explorer


Theorem mdiv

Description: A division law. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a
|- ( ph -> A e. CC )
ldiv.b
|- ( ph -> B e. CC )
ldiv.c
|- ( ph -> C e. CC )
mdiv.an0
|- ( ph -> A =/= 0 )
mdiv.bn0
|- ( ph -> B =/= 0 )
Assertion mdiv
|- ( ph -> ( A = ( C / B ) <-> B = ( C / A ) ) )

Proof

Step Hyp Ref Expression
1 ldiv.a
 |-  ( ph -> A e. CC )
2 ldiv.b
 |-  ( ph -> B e. CC )
3 ldiv.c
 |-  ( ph -> C e. CC )
4 mdiv.an0
 |-  ( ph -> A =/= 0 )
5 mdiv.bn0
 |-  ( ph -> B =/= 0 )
6 1 2 3 5 ldiv
 |-  ( ph -> ( ( A x. B ) = C <-> A = ( C / B ) ) )
7 1 2 3 4 rdiv
 |-  ( ph -> ( ( A x. B ) = C <-> B = ( C / A ) ) )
8 6 7 bitr3d
 |-  ( ph -> ( A = ( C / B ) <-> B = ( C / A ) ) )