Step |
Hyp |
Ref |
Expression |
1 |
|
sstr2 |
|- ( x C_ D -> ( D C_ B -> x C_ B ) ) |
2 |
1
|
com12 |
|- ( D C_ B -> ( x C_ D -> x C_ B ) ) |
3 |
2
|
ad2antlr |
|- ( ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) -> ( x C_ D -> x C_ B ) ) |
4 |
3
|
ad2antlr |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) /\ x e. CH ) -> ( x C_ D -> x C_ B ) ) |
5 |
|
chlej2 |
|- ( ( ( C e. CH /\ A e. CH /\ x e. CH ) /\ C C_ A ) -> ( x vH C ) C_ ( x vH A ) ) |
6 |
|
ss2in |
|- ( ( ( x vH C ) C_ ( x vH A ) /\ D C_ B ) -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) |
7 |
6
|
ex |
|- ( ( x vH C ) C_ ( x vH A ) -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) |
8 |
5 7
|
syl |
|- ( ( ( C e. CH /\ A e. CH /\ x e. CH ) /\ C C_ A ) -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) |
9 |
8
|
ex |
|- ( ( C e. CH /\ A e. CH /\ x e. CH ) -> ( C C_ A -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) ) |
10 |
9
|
3expia |
|- ( ( C e. CH /\ A e. CH ) -> ( x e. CH -> ( C C_ A -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) ) ) |
11 |
10
|
ancoms |
|- ( ( A e. CH /\ C e. CH ) -> ( x e. CH -> ( C C_ A -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) ) ) |
12 |
11
|
ad2ant2r |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( x e. CH -> ( C C_ A -> ( D C_ B -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) ) ) ) |
13 |
12
|
imp43 |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ x e. CH ) /\ ( C C_ A /\ D C_ B ) ) -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) |
14 |
13
|
adantrr |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ x e. CH ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) ) |
15 |
|
oveq2 |
|- ( ( A i^i B ) = 0H -> ( x vH ( A i^i B ) ) = ( x vH 0H ) ) |
16 |
|
chj0 |
|- ( x e. CH -> ( x vH 0H ) = x ) |
17 |
15 16
|
sylan9eqr |
|- ( ( x e. CH /\ ( A i^i B ) = 0H ) -> ( x vH ( A i^i B ) ) = x ) |
18 |
17
|
adantl |
|- ( ( ( C e. CH /\ D e. CH ) /\ ( x e. CH /\ ( A i^i B ) = 0H ) ) -> ( x vH ( A i^i B ) ) = x ) |
19 |
|
chincl |
|- ( ( C e. CH /\ D e. CH ) -> ( C i^i D ) e. CH ) |
20 |
|
chub1 |
|- ( ( x e. CH /\ ( C i^i D ) e. CH ) -> x C_ ( x vH ( C i^i D ) ) ) |
21 |
20
|
ancoms |
|- ( ( ( C i^i D ) e. CH /\ x e. CH ) -> x C_ ( x vH ( C i^i D ) ) ) |
22 |
19 21
|
sylan |
|- ( ( ( C e. CH /\ D e. CH ) /\ x e. CH ) -> x C_ ( x vH ( C i^i D ) ) ) |
23 |
22
|
adantrr |
|- ( ( ( C e. CH /\ D e. CH ) /\ ( x e. CH /\ ( A i^i B ) = 0H ) ) -> x C_ ( x vH ( C i^i D ) ) ) |
24 |
18 23
|
eqsstrd |
|- ( ( ( C e. CH /\ D e. CH ) /\ ( x e. CH /\ ( A i^i B ) = 0H ) ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) ) |
25 |
24
|
adantll |
|- ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( x e. CH /\ ( A i^i B ) = 0H ) ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) ) |
26 |
25
|
anassrs |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ x e. CH ) /\ ( A i^i B ) = 0H ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) ) |
27 |
26
|
adantrl |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ x e. CH ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) ) |
28 |
|
sstr2 |
|- ( ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( A i^i B ) ) ) ) |
29 |
|
sstr2 |
|- ( ( ( x vH C ) i^i D ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) |
30 |
28 29
|
syl6 |
|- ( ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
31 |
30
|
com23 |
|- ( ( ( x vH C ) i^i D ) C_ ( ( x vH A ) i^i B ) -> ( ( x vH ( A i^i B ) ) C_ ( x vH ( C i^i D ) ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
32 |
14 27 31
|
sylc |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ x e. CH ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) |
33 |
32
|
an32s |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) /\ x e. CH ) -> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) |
34 |
4 33
|
imim12d |
|- ( ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) /\ x e. CH ) -> ( ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) -> ( x C_ D -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
35 |
34
|
ralimdva |
|- ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) -> A. x e. CH ( x C_ D -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
36 |
|
mdbr2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
37 |
36
|
ad2antrr |
|- ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
38 |
|
mdbr2 |
|- ( ( C e. CH /\ D e. CH ) -> ( C MH D <-> A. x e. CH ( x C_ D -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
39 |
38
|
ad2antlr |
|- ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( C MH D <-> A. x e. CH ( x C_ D -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
40 |
35 37 39
|
3imtr4d |
|- ( ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) /\ ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) ) -> ( A MH B -> C MH D ) ) |
41 |
40
|
expimpd |
|- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( ( ( C C_ A /\ D C_ B ) /\ ( A i^i B ) = 0H ) /\ A MH B ) -> C MH D ) ) |