| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsl.1 |
|- A e. CH |
| 2 |
|
mdsl.2 |
|- B e. CH |
| 3 |
|
chub1 |
|- ( ( x e. CH /\ A e. CH ) -> x C_ ( x vH A ) ) |
| 4 |
1 3
|
mpan2 |
|- ( x e. CH -> x C_ ( x vH A ) ) |
| 5 |
|
iba |
|- ( x C_ B -> ( x C_ ( x vH A ) <-> ( x C_ ( x vH A ) /\ x C_ B ) ) ) |
| 6 |
|
ssin |
|- ( ( x C_ ( x vH A ) /\ x C_ B ) <-> x C_ ( ( x vH A ) i^i B ) ) |
| 7 |
5 6
|
bitrdi |
|- ( x C_ B -> ( x C_ ( x vH A ) <-> x C_ ( ( x vH A ) i^i B ) ) ) |
| 8 |
4 7
|
syl5ibcom |
|- ( x e. CH -> ( x C_ B -> x C_ ( ( x vH A ) i^i B ) ) ) |
| 9 |
|
chub2 |
|- ( ( A e. CH /\ x e. CH ) -> A C_ ( x vH A ) ) |
| 10 |
1 9
|
mpan |
|- ( x e. CH -> A C_ ( x vH A ) ) |
| 11 |
10
|
ssrind |
|- ( x e. CH -> ( A i^i B ) C_ ( ( x vH A ) i^i B ) ) |
| 12 |
8 11
|
jctird |
|- ( x e. CH -> ( x C_ B -> ( x C_ ( ( x vH A ) i^i B ) /\ ( A i^i B ) C_ ( ( x vH A ) i^i B ) ) ) ) |
| 13 |
|
chjcl |
|- ( ( x e. CH /\ A e. CH ) -> ( x vH A ) e. CH ) |
| 14 |
1 13
|
mpan2 |
|- ( x e. CH -> ( x vH A ) e. CH ) |
| 15 |
|
chincl |
|- ( ( ( x vH A ) e. CH /\ B e. CH ) -> ( ( x vH A ) i^i B ) e. CH ) |
| 16 |
2 15
|
mpan2 |
|- ( ( x vH A ) e. CH -> ( ( x vH A ) i^i B ) e. CH ) |
| 17 |
14 16
|
syl |
|- ( x e. CH -> ( ( x vH A ) i^i B ) e. CH ) |
| 18 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 19 |
|
chlub |
|- ( ( x e. CH /\ ( A i^i B ) e. CH /\ ( ( x vH A ) i^i B ) e. CH ) -> ( ( x C_ ( ( x vH A ) i^i B ) /\ ( A i^i B ) C_ ( ( x vH A ) i^i B ) ) <-> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 20 |
18 19
|
mp3an2 |
|- ( ( x e. CH /\ ( ( x vH A ) i^i B ) e. CH ) -> ( ( x C_ ( ( x vH A ) i^i B ) /\ ( A i^i B ) C_ ( ( x vH A ) i^i B ) ) <-> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 21 |
17 20
|
mpdan |
|- ( x e. CH -> ( ( x C_ ( ( x vH A ) i^i B ) /\ ( A i^i B ) C_ ( ( x vH A ) i^i B ) ) <-> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 22 |
12 21
|
sylibd |
|- ( x e. CH -> ( x C_ B -> ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 23 |
|
eqss |
|- ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) /\ ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) ) ) |
| 24 |
23
|
rbaib |
|- ( ( x vH ( A i^i B ) ) C_ ( ( x vH A ) i^i B ) -> ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) |
| 25 |
22 24
|
syl6 |
|- ( x e. CH -> ( x C_ B -> ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
| 26 |
25
|
adantld |
|- ( x e. CH -> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) <-> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
| 27 |
26
|
pm5.74d |
|- ( x e. CH -> ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) <-> ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
| 28 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
| 29 |
|
sstr |
|- ( ( x C_ B /\ B C_ ( A vH B ) ) -> x C_ ( A vH B ) ) |
| 30 |
28 29
|
mpan2 |
|- ( x C_ B -> x C_ ( A vH B ) ) |
| 31 |
30
|
pm4.71ri |
|- ( x C_ B <-> ( x C_ ( A vH B ) /\ x C_ B ) ) |
| 32 |
31
|
anbi2i |
|- ( ( ( A i^i B ) C_ x /\ x C_ B ) <-> ( ( A i^i B ) C_ x /\ ( x C_ ( A vH B ) /\ x C_ B ) ) ) |
| 33 |
|
anass |
|- ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) <-> ( ( A i^i B ) C_ x /\ ( x C_ ( A vH B ) /\ x C_ B ) ) ) |
| 34 |
32 33
|
bitr4i |
|- ( ( ( A i^i B ) C_ x /\ x C_ B ) <-> ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) ) |
| 35 |
34
|
imbi1i |
|- ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) <-> ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
| 36 |
27 35
|
bitr3di |
|- ( x e. CH -> ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 37 |
|
impexp |
|- ( ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) <-> ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 38 |
36 37
|
bitrdi |
|- ( x e. CH -> ( ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) ) |
| 39 |
38
|
ralbiia |
|- ( A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 40 |
1 2
|
mdsl1i |
|- ( A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) <-> A MH B ) |
| 41 |
39 40
|
bitr2i |
|- ( A MH B <-> A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) |