Step |
Hyp |
Ref |
Expression |
1 |
|
mdi |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) |
2 |
1
|
3adantr2 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = ( C vH ( A i^i B ) ) ) |
3 |
|
chincl |
|- ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH ) |
4 |
|
chlejb2 |
|- ( ( ( A i^i B ) e. CH /\ C e. CH ) -> ( ( A i^i B ) C_ C <-> ( C vH ( A i^i B ) ) = C ) ) |
5 |
3 4
|
stoic3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) C_ C <-> ( C vH ( A i^i B ) ) = C ) ) |
6 |
5
|
biimpa |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A i^i B ) C_ C ) -> ( C vH ( A i^i B ) ) = C ) |
7 |
6
|
3ad2antr2 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( C vH ( A i^i B ) ) = C ) |
8 |
2 7
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = C ) |