| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
|- A e. CH |
| 2 |
|
mdslmd.2 |
|- B e. CH |
| 3 |
|
mdslmd.3 |
|- C e. CH |
| 4 |
|
mdslmd.4 |
|- D e. CH |
| 5 |
|
mddmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) ) |
| 6 |
1 2 5
|
mp2an |
|- ( A MH B <-> ( _|_ ` A ) MH* ( _|_ ` B ) ) |
| 7 |
|
dmdmd |
|- ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
| 8 |
2 1 7
|
mp2an |
|- ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) |
| 9 |
6 8
|
anbi12ci |
|- ( ( A MH B /\ B MH* A ) <-> ( ( _|_ ` B ) MH ( _|_ ` A ) /\ ( _|_ ` A ) MH* ( _|_ ` B ) ) ) |
| 10 |
3 4
|
chincli |
|- ( C i^i D ) e. CH |
| 11 |
1 10
|
chsscon3i |
|- ( A C_ ( C i^i D ) <-> ( _|_ ` ( C i^i D ) ) C_ ( _|_ ` A ) ) |
| 12 |
3 4
|
chdmm1i |
|- ( _|_ ` ( C i^i D ) ) = ( ( _|_ ` C ) vH ( _|_ ` D ) ) |
| 13 |
12
|
sseq1i |
|- ( ( _|_ ` ( C i^i D ) ) C_ ( _|_ ` A ) <-> ( ( _|_ ` C ) vH ( _|_ ` D ) ) C_ ( _|_ ` A ) ) |
| 14 |
11 13
|
bitri |
|- ( A C_ ( C i^i D ) <-> ( ( _|_ ` C ) vH ( _|_ ` D ) ) C_ ( _|_ ` A ) ) |
| 15 |
3 4
|
chjcli |
|- ( C vH D ) e. CH |
| 16 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 17 |
15 16
|
chsscon3i |
|- ( ( C vH D ) C_ ( A vH B ) <-> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( C vH D ) ) ) |
| 18 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 19 |
|
incom |
|- ( ( _|_ ` A ) i^i ( _|_ ` B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 20 |
18 19
|
eqtri |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 21 |
3 4
|
chdmj1i |
|- ( _|_ ` ( C vH D ) ) = ( ( _|_ ` C ) i^i ( _|_ ` D ) ) |
| 22 |
20 21
|
sseq12i |
|- ( ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( C vH D ) ) <-> ( ( _|_ ` B ) i^i ( _|_ ` A ) ) C_ ( ( _|_ ` C ) i^i ( _|_ ` D ) ) ) |
| 23 |
17 22
|
bitri |
|- ( ( C vH D ) C_ ( A vH B ) <-> ( ( _|_ ` B ) i^i ( _|_ ` A ) ) C_ ( ( _|_ ` C ) i^i ( _|_ ` D ) ) ) |
| 24 |
14 23
|
anbi12ci |
|- ( ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) <-> ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) C_ ( ( _|_ ` C ) i^i ( _|_ ` D ) ) /\ ( ( _|_ ` C ) vH ( _|_ ` D ) ) C_ ( _|_ ` A ) ) ) |
| 25 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 26 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 27 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
| 28 |
4
|
choccli |
|- ( _|_ ` D ) e. CH |
| 29 |
25 26 27 28
|
mdslmd2i |
|- ( ( ( ( _|_ ` B ) MH ( _|_ ` A ) /\ ( _|_ ` A ) MH* ( _|_ ` B ) ) /\ ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) C_ ( ( _|_ ` C ) i^i ( _|_ ` D ) ) /\ ( ( _|_ ` C ) vH ( _|_ ` D ) ) C_ ( _|_ ` A ) ) ) -> ( ( _|_ ` C ) MH ( _|_ ` D ) <-> ( ( _|_ ` C ) vH ( _|_ ` B ) ) MH ( ( _|_ ` D ) vH ( _|_ ` B ) ) ) ) |
| 30 |
9 24 29
|
syl2anb |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( ( _|_ ` C ) MH ( _|_ ` D ) <-> ( ( _|_ ` C ) vH ( _|_ ` B ) ) MH ( ( _|_ ` D ) vH ( _|_ ` B ) ) ) ) |
| 31 |
|
dmdmd |
|- ( ( C e. CH /\ D e. CH ) -> ( C MH* D <-> ( _|_ ` C ) MH ( _|_ ` D ) ) ) |
| 32 |
3 4 31
|
mp2an |
|- ( C MH* D <-> ( _|_ ` C ) MH ( _|_ ` D ) ) |
| 33 |
3 2
|
chincli |
|- ( C i^i B ) e. CH |
| 34 |
4 2
|
chincli |
|- ( D i^i B ) e. CH |
| 35 |
|
dmdmd |
|- ( ( ( C i^i B ) e. CH /\ ( D i^i B ) e. CH ) -> ( ( C i^i B ) MH* ( D i^i B ) <-> ( _|_ ` ( C i^i B ) ) MH ( _|_ ` ( D i^i B ) ) ) ) |
| 36 |
33 34 35
|
mp2an |
|- ( ( C i^i B ) MH* ( D i^i B ) <-> ( _|_ ` ( C i^i B ) ) MH ( _|_ ` ( D i^i B ) ) ) |
| 37 |
3 2
|
chdmm1i |
|- ( _|_ ` ( C i^i B ) ) = ( ( _|_ ` C ) vH ( _|_ ` B ) ) |
| 38 |
4 2
|
chdmm1i |
|- ( _|_ ` ( D i^i B ) ) = ( ( _|_ ` D ) vH ( _|_ ` B ) ) |
| 39 |
37 38
|
breq12i |
|- ( ( _|_ ` ( C i^i B ) ) MH ( _|_ ` ( D i^i B ) ) <-> ( ( _|_ ` C ) vH ( _|_ ` B ) ) MH ( ( _|_ ` D ) vH ( _|_ ` B ) ) ) |
| 40 |
36 39
|
bitri |
|- ( ( C i^i B ) MH* ( D i^i B ) <-> ( ( _|_ ` C ) vH ( _|_ ` B ) ) MH ( ( _|_ ` D ) vH ( _|_ ` B ) ) ) |
| 41 |
30 32 40
|
3bitr4g |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( C MH* D <-> ( C i^i B ) MH* ( D i^i B ) ) ) |