Step |
Hyp |
Ref |
Expression |
1 |
|
mdslle1.1 |
|- A e. CH |
2 |
|
mdslle1.2 |
|- B e. CH |
3 |
|
mdslle1.3 |
|- C e. CH |
4 |
|
mdslle1.4 |
|- D e. CH |
5 |
|
ssin |
|- ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) |
6 |
5
|
bicomi |
|- ( A C_ ( C i^i D ) <-> ( A C_ C /\ A C_ D ) ) |
7 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
8 |
3 4 7
|
chlubi |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) <-> ( C vH D ) C_ ( A vH B ) ) |
9 |
8
|
bicomi |
|- ( ( C vH D ) C_ ( A vH B ) <-> ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) |
10 |
6 9
|
anbi12i |
|- ( ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) <-> ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) |
11 |
|
simpr |
|- ( ( A MH B /\ B MH* A ) -> B MH* A ) |
12 |
|
simpl |
|- ( ( A C_ C /\ A C_ D ) -> A C_ C ) |
13 |
|
simpl |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) -> C C_ ( A vH B ) ) |
14 |
1 2 3
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ C e. CH ) |
15 |
|
dmdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C /\ C C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH A ) = C ) |
16 |
14 15
|
mpan |
|- ( ( B MH* A /\ A C_ C /\ C C_ ( A vH B ) ) -> ( ( C i^i B ) vH A ) = C ) |
17 |
11 12 13 16
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH A ) = C ) |
18 |
3 2
|
chincli |
|- ( C i^i B ) e. CH |
19 |
4 2
|
chincli |
|- ( D i^i B ) e. CH |
20 |
18 19
|
chub1i |
|- ( C i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) |
21 |
18 19
|
chjcli |
|- ( ( C i^i B ) vH ( D i^i B ) ) e. CH |
22 |
18 21 1
|
chlej1i |
|- ( ( C i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) -> ( ( C i^i B ) vH A ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
23 |
20 22
|
mp1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH A ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
24 |
17 23
|
eqsstrrd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> C C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
25 |
|
simpr |
|- ( ( A C_ C /\ A C_ D ) -> A C_ D ) |
26 |
|
simpr |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) -> D C_ ( A vH B ) ) |
27 |
1 2 4
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ D e. CH ) |
28 |
|
dmdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ D e. CH ) /\ ( B MH* A /\ A C_ D /\ D C_ ( A vH B ) ) ) -> ( ( D i^i B ) vH A ) = D ) |
29 |
27 28
|
mpan |
|- ( ( B MH* A /\ A C_ D /\ D C_ ( A vH B ) ) -> ( ( D i^i B ) vH A ) = D ) |
30 |
11 25 26 29
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( D i^i B ) vH A ) = D ) |
31 |
19 18
|
chub2i |
|- ( D i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) |
32 |
19 21 1
|
chlej1i |
|- ( ( D i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) -> ( ( D i^i B ) vH A ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
33 |
31 32
|
mp1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( D i^i B ) vH A ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
34 |
30 33
|
eqsstrrd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> D C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
35 |
24 34
|
jca |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) /\ D C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) ) |
36 |
21 1
|
chjcli |
|- ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) e. CH |
37 |
3 4 36
|
chlubi |
|- ( ( C C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) /\ D C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) <-> ( C vH D ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
38 |
35 37
|
sylib |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C vH D ) C_ ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) ) |
39 |
38
|
ssrind |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( C vH D ) i^i B ) C_ ( ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) i^i B ) ) |
40 |
|
simpl |
|- ( ( A MH B /\ B MH* A ) -> A MH B ) |
41 |
|
ssrin |
|- ( A C_ C -> ( A i^i B ) C_ ( C i^i B ) ) |
42 |
41 20
|
sstrdi |
|- ( A C_ C -> ( A i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) ) |
43 |
42
|
adantr |
|- ( ( A C_ C /\ A C_ D ) -> ( A i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) ) |
44 |
|
inss2 |
|- ( C i^i B ) C_ B |
45 |
|
inss2 |
|- ( D i^i B ) C_ B |
46 |
18 19 2
|
chlubi |
|- ( ( ( C i^i B ) C_ B /\ ( D i^i B ) C_ B ) <-> ( ( C i^i B ) vH ( D i^i B ) ) C_ B ) |
47 |
46
|
bicomi |
|- ( ( ( C i^i B ) vH ( D i^i B ) ) C_ B <-> ( ( C i^i B ) C_ B /\ ( D i^i B ) C_ B ) ) |
48 |
44 45 47
|
mpbir2an |
|- ( ( C i^i B ) vH ( D i^i B ) ) C_ B |
49 |
48
|
a1i |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) -> ( ( C i^i B ) vH ( D i^i B ) ) C_ B ) |
50 |
1 2 21
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ ( ( C i^i B ) vH ( D i^i B ) ) e. CH ) |
51 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ ( ( C i^i B ) vH ( D i^i B ) ) e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) /\ ( ( C i^i B ) vH ( D i^i B ) ) C_ B ) ) -> ( ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) i^i B ) = ( ( C i^i B ) vH ( D i^i B ) ) ) |
52 |
50 51
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) /\ ( ( C i^i B ) vH ( D i^i B ) ) C_ B ) -> ( ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) i^i B ) = ( ( C i^i B ) vH ( D i^i B ) ) ) |
53 |
40 43 49 52
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( ( ( C i^i B ) vH ( D i^i B ) ) vH A ) i^i B ) = ( ( C i^i B ) vH ( D i^i B ) ) ) |
54 |
39 53
|
sseqtrd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( C vH D ) i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) ) |
55 |
54
|
3expb |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( C vH D ) i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) ) |
56 |
10 55
|
sylan2b |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( ( C vH D ) i^i B ) C_ ( ( C i^i B ) vH ( D i^i B ) ) ) |
57 |
3 4 2
|
lediri |
|- ( ( C i^i B ) vH ( D i^i B ) ) C_ ( ( C vH D ) i^i B ) |
58 |
57
|
a1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH ( D i^i B ) ) C_ ( ( C vH D ) i^i B ) ) |
59 |
56 58
|
eqssd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( ( C vH D ) i^i B ) = ( ( C i^i B ) vH ( D i^i B ) ) ) |