Step |
Hyp |
Ref |
Expression |
1 |
|
mdslle1.1 |
|- A e. CH |
2 |
|
mdslle1.2 |
|- B e. CH |
3 |
|
mdslle1.3 |
|- C e. CH |
4 |
|
mdslle1.4 |
|- D e. CH |
5 |
3 4 1
|
lejdiri |
|- ( ( C i^i D ) vH A ) C_ ( ( C vH A ) i^i ( D vH A ) ) |
6 |
5
|
a1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( C i^i D ) vH A ) C_ ( ( C vH A ) i^i ( D vH A ) ) ) |
7 |
|
ssin |
|- ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) <-> ( A i^i B ) C_ ( C i^i D ) ) |
8 |
7
|
bicomi |
|- ( ( A i^i B ) C_ ( C i^i D ) <-> ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) ) |
9 |
3 4 2
|
chlubi |
|- ( ( C C_ B /\ D C_ B ) <-> ( C vH D ) C_ B ) |
10 |
9
|
bicomi |
|- ( ( C vH D ) C_ B <-> ( C C_ B /\ D C_ B ) ) |
11 |
8 10
|
anbi12i |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) <-> ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) ) |
12 |
|
simpr |
|- ( ( A MH B /\ B MH* A ) -> B MH* A ) |
13 |
1 3
|
chub2i |
|- A C_ ( C vH A ) |
14 |
1 4
|
chub2i |
|- A C_ ( D vH A ) |
15 |
13 14
|
ssini |
|- A C_ ( ( C vH A ) i^i ( D vH A ) ) |
16 |
15
|
a1i |
|- ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) -> A C_ ( ( C vH A ) i^i ( D vH A ) ) ) |
17 |
3 2 1
|
chlej1i |
|- ( C C_ B -> ( C vH A ) C_ ( B vH A ) ) |
18 |
2 1
|
chjcomi |
|- ( B vH A ) = ( A vH B ) |
19 |
17 18
|
sseqtrdi |
|- ( C C_ B -> ( C vH A ) C_ ( A vH B ) ) |
20 |
|
ssinss1 |
|- ( ( C vH A ) C_ ( A vH B ) -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( A vH B ) ) |
21 |
19 20
|
syl |
|- ( C C_ B -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( A vH B ) ) |
22 |
21
|
adantr |
|- ( ( C C_ B /\ D C_ B ) -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( A vH B ) ) |
23 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
24 |
4 1
|
chjcli |
|- ( D vH A ) e. CH |
25 |
23 24
|
chincli |
|- ( ( C vH A ) i^i ( D vH A ) ) e. CH |
26 |
1 2 25
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ ( ( C vH A ) i^i ( D vH A ) ) e. CH ) |
27 |
|
dmdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ ( ( C vH A ) i^i ( D vH A ) ) e. CH ) /\ ( B MH* A /\ A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) i^i ( D vH A ) ) C_ ( A vH B ) ) ) -> ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) vH A ) = ( ( C vH A ) i^i ( D vH A ) ) ) |
28 |
26 27
|
mpan |
|- ( ( B MH* A /\ A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) i^i ( D vH A ) ) C_ ( A vH B ) ) -> ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) vH A ) = ( ( C vH A ) i^i ( D vH A ) ) ) |
29 |
12 16 22 28
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) vH A ) = ( ( C vH A ) i^i ( D vH A ) ) ) |
30 |
|
inss1 |
|- ( ( C vH A ) i^i ( D vH A ) ) C_ ( C vH A ) |
31 |
|
ssrin |
|- ( ( ( C vH A ) i^i ( D vH A ) ) C_ ( C vH A ) -> ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( ( C vH A ) i^i B ) ) |
32 |
30 31
|
ax-mp |
|- ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( ( C vH A ) i^i B ) |
33 |
|
simpl |
|- ( ( A MH B /\ B MH* A ) -> A MH B ) |
34 |
|
simpl |
|- ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) -> ( A i^i B ) C_ C ) |
35 |
|
simpl |
|- ( ( C C_ B /\ D C_ B ) -> C C_ B ) |
36 |
1 2 3
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ C e. CH ) |
37 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = C ) |
38 |
36 37
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) -> ( ( C vH A ) i^i B ) = C ) |
39 |
33 34 35 38
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( C vH A ) i^i B ) = C ) |
40 |
32 39
|
sseqtrid |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ C ) |
41 |
|
inss2 |
|- ( ( C vH A ) i^i ( D vH A ) ) C_ ( D vH A ) |
42 |
|
ssrin |
|- ( ( ( C vH A ) i^i ( D vH A ) ) C_ ( D vH A ) -> ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( ( D vH A ) i^i B ) ) |
43 |
41 42
|
ax-mp |
|- ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( ( D vH A ) i^i B ) |
44 |
|
simpr |
|- ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) -> ( A i^i B ) C_ D ) |
45 |
|
simpr |
|- ( ( C C_ B /\ D C_ B ) -> D C_ B ) |
46 |
1 2 4
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ D e. CH ) |
47 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ D e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) ) -> ( ( D vH A ) i^i B ) = D ) |
48 |
46 47
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) -> ( ( D vH A ) i^i B ) = D ) |
49 |
33 44 45 48
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( D vH A ) i^i B ) = D ) |
50 |
43 49
|
sseqtrid |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ D ) |
51 |
40 50
|
ssind |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( C i^i D ) ) |
52 |
25 2
|
chincli |
|- ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) e. CH |
53 |
3 4
|
chincli |
|- ( C i^i D ) e. CH |
54 |
52 53 1
|
chlej1i |
|- ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) C_ ( C i^i D ) -> ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) vH A ) C_ ( ( C i^i D ) vH A ) ) |
55 |
51 54
|
syl |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( ( ( C vH A ) i^i ( D vH A ) ) i^i B ) vH A ) C_ ( ( C i^i D ) vH A ) ) |
56 |
29 55
|
eqsstrrd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( ( C i^i D ) vH A ) ) |
57 |
56
|
3expb |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A i^i B ) C_ C /\ ( A i^i B ) C_ D ) /\ ( C C_ B /\ D C_ B ) ) ) -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( ( C i^i D ) vH A ) ) |
58 |
11 57
|
sylan2b |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( C vH A ) i^i ( D vH A ) ) C_ ( ( C i^i D ) vH A ) ) |
59 |
6 58
|
eqssd |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( C i^i D ) vH A ) = ( ( C vH A ) i^i ( D vH A ) ) ) |