Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
|- A e. CH |
2 |
|
mdslmd.2 |
|- B e. CH |
3 |
|
mdslmd.3 |
|- C e. CH |
4 |
|
mdslmd.4 |
|- D e. CH |
5 |
|
ssin |
|- ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) |
6 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
7 |
3 4 6
|
chlubi |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) <-> ( C vH D ) C_ ( A vH B ) ) |
8 |
5 7
|
anbi12i |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) <-> ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) |
9 |
|
chjcl |
|- ( ( x e. CH /\ A e. CH ) -> ( x vH A ) e. CH ) |
10 |
1 9
|
mpan2 |
|- ( x e. CH -> ( x vH A ) e. CH ) |
11 |
|
sseq1 |
|- ( y = ( x vH A ) -> ( y C_ D <-> ( x vH A ) C_ D ) ) |
12 |
|
oveq1 |
|- ( y = ( x vH A ) -> ( y vH C ) = ( ( x vH A ) vH C ) ) |
13 |
12
|
ineq1d |
|- ( y = ( x vH A ) -> ( ( y vH C ) i^i D ) = ( ( ( x vH A ) vH C ) i^i D ) ) |
14 |
|
oveq1 |
|- ( y = ( x vH A ) -> ( y vH ( C i^i D ) ) = ( ( x vH A ) vH ( C i^i D ) ) ) |
15 |
13 14
|
sseq12d |
|- ( y = ( x vH A ) -> ( ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) <-> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) ) |
16 |
11 15
|
imbi12d |
|- ( y = ( x vH A ) -> ( ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) <-> ( ( x vH A ) C_ D -> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) ) ) |
17 |
16
|
rspcv |
|- ( ( x vH A ) e. CH -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( ( x vH A ) C_ D -> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) ) ) |
18 |
10 17
|
syl |
|- ( x e. CH -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( ( x vH A ) C_ D -> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) ) ) |
19 |
18
|
adantr |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( ( x vH A ) C_ D -> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) ) ) |
20 |
1 2 3 4
|
mdslmd1lem3 |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( ( ( x vH A ) C_ D -> ( ( ( x vH A ) vH C ) i^i D ) C_ ( ( x vH A ) vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
21 |
19 20
|
syld |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
22 |
21
|
ex |
|- ( x e. CH -> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) ) |
23 |
22
|
com3l |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> ( x e. CH -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) ) |
24 |
23
|
ralrimdv |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) -> A. x e. CH ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
25 |
|
mdbr2 |
|- ( ( C e. CH /\ D e. CH ) -> ( C MH D <-> A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) ) ) |
26 |
3 4 25
|
mp2an |
|- ( C MH D <-> A. y e. CH ( y C_ D -> ( ( y vH C ) i^i D ) C_ ( y vH ( C i^i D ) ) ) ) |
27 |
3 2
|
chincli |
|- ( C i^i B ) e. CH |
28 |
4 2
|
chincli |
|- ( D i^i B ) e. CH |
29 |
27 28
|
mdsl2i |
|- ( ( C i^i B ) MH ( D i^i B ) <-> A. x e. CH ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ x /\ x C_ ( D i^i B ) ) -> ( ( x vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( x vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
30 |
24 26 29
|
3imtr4g |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( C MH D -> ( C i^i B ) MH ( D i^i B ) ) ) |
31 |
|
chincl |
|- ( ( x e. CH /\ B e. CH ) -> ( x i^i B ) e. CH ) |
32 |
2 31
|
mpan2 |
|- ( x e. CH -> ( x i^i B ) e. CH ) |
33 |
|
sseq1 |
|- ( y = ( x i^i B ) -> ( y C_ ( D i^i B ) <-> ( x i^i B ) C_ ( D i^i B ) ) ) |
34 |
|
oveq1 |
|- ( y = ( x i^i B ) -> ( y vH ( C i^i B ) ) = ( ( x i^i B ) vH ( C i^i B ) ) ) |
35 |
34
|
ineq1d |
|- ( y = ( x i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) |
36 |
|
oveq1 |
|- ( y = ( x i^i B ) -> ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) |
37 |
35 36
|
sseq12d |
|- ( y = ( x i^i B ) -> ( ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
38 |
33 37
|
imbi12d |
|- ( y = ( x i^i B ) -> ( ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) <-> ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
39 |
38
|
rspcv |
|- ( ( x i^i B ) e. CH -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
40 |
32 39
|
syl |
|- ( x e. CH -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
41 |
40
|
adantr |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
42 |
1 2 3 4
|
mdslmd1lem4 |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
43 |
41 42
|
syld |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
44 |
43
|
ex |
|- ( x e. CH -> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) ) |
45 |
44
|
com3l |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( x e. CH -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) ) |
46 |
45
|
ralrimdv |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> A. x e. CH ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |
47 |
|
mdbr2 |
|- ( ( ( C i^i B ) e. CH /\ ( D i^i B ) e. CH ) -> ( ( C i^i B ) MH ( D i^i B ) <-> A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
48 |
27 28 47
|
mp2an |
|- ( ( C i^i B ) MH ( D i^i B ) <-> A. y e. CH ( y C_ ( D i^i B ) -> ( ( y vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( y vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
49 |
3 4
|
mdsl2i |
|- ( C MH D <-> A. x e. CH ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) |
50 |
46 48 49
|
3imtr4g |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( C i^i B ) MH ( D i^i B ) -> C MH D ) ) |
51 |
30 50
|
impbid |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( C MH D <-> ( C i^i B ) MH ( D i^i B ) ) ) |
52 |
8 51
|
sylan2br |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( C i^i D ) /\ ( C vH D ) C_ ( A vH B ) ) ) -> ( C MH D <-> ( C i^i B ) MH ( D i^i B ) ) ) |