Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
|- A e. CH |
2 |
|
mdslmd.2 |
|- B e. CH |
3 |
|
mdslmd.3 |
|- C e. CH |
4 |
|
mdslmd.4 |
|- D e. CH |
5 |
|
mdslmd1lem.5 |
|- R e. CH |
6 |
4 2
|
chincli |
|- ( D i^i B ) e. CH |
7 |
5 6 1
|
chlej1i |
|- ( R C_ ( D i^i B ) -> ( R vH A ) C_ ( ( D i^i B ) vH A ) ) |
8 |
|
simpr |
|- ( ( A MH B /\ B MH* A ) -> B MH* A ) |
9 |
|
simpr |
|- ( ( A C_ C /\ A C_ D ) -> A C_ D ) |
10 |
|
simpr |
|- ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) -> D C_ ( A vH B ) ) |
11 |
1 2 4
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ D e. CH ) |
12 |
|
dmdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ D e. CH ) /\ ( B MH* A /\ A C_ D /\ D C_ ( A vH B ) ) ) -> ( ( D i^i B ) vH A ) = D ) |
13 |
11 12
|
mpan |
|- ( ( B MH* A /\ A C_ D /\ D C_ ( A vH B ) ) -> ( ( D i^i B ) vH A ) = D ) |
14 |
8 9 10 13
|
syl3an |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( D i^i B ) vH A ) = D ) |
15 |
14
|
3expb |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( D i^i B ) vH A ) = D ) |
16 |
15
|
sseq2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( R vH A ) C_ ( ( D i^i B ) vH A ) <-> ( R vH A ) C_ D ) ) |
17 |
7 16
|
syl5ib |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( R C_ ( D i^i B ) -> ( R vH A ) C_ D ) ) |
18 |
17
|
adantld |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( R vH A ) C_ D ) ) |
19 |
18
|
imim1d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( R vH A ) C_ D -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) ) ) ) |
20 |
|
simpll |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A MH B /\ B MH* A ) ) |
21 |
|
simpll |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ C ) |
22 |
21
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ C ) |
23 |
1 5
|
chub2i |
|- A C_ ( R vH A ) |
24 |
22 23
|
jctil |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A C_ ( R vH A ) /\ A C_ C ) ) |
25 |
|
ssin |
|- ( ( A C_ ( R vH A ) /\ A C_ C ) <-> A C_ ( ( R vH A ) i^i C ) ) |
26 |
24 25
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ ( ( R vH A ) i^i C ) ) |
27 |
|
inss1 |
|- ( D i^i B ) C_ D |
28 |
|
sstr |
|- ( ( R C_ ( D i^i B ) /\ ( D i^i B ) C_ D ) -> R C_ D ) |
29 |
27 28
|
mpan2 |
|- ( R C_ ( D i^i B ) -> R C_ D ) |
30 |
|
sstr |
|- ( ( R C_ D /\ D C_ ( A vH B ) ) -> R C_ ( A vH B ) ) |
31 |
29 30
|
sylan |
|- ( ( R C_ ( D i^i B ) /\ D C_ ( A vH B ) ) -> R C_ ( A vH B ) ) |
32 |
31
|
ancoms |
|- ( ( D C_ ( A vH B ) /\ R C_ ( D i^i B ) ) -> R C_ ( A vH B ) ) |
33 |
32
|
adantll |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ ( D i^i B ) ) -> R C_ ( A vH B ) ) |
34 |
33
|
adantll |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ R C_ ( D i^i B ) ) -> R C_ ( A vH B ) ) |
35 |
34
|
ad2ant2l |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> R C_ ( A vH B ) ) |
36 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
37 |
35 36
|
jctir |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( R C_ ( A vH B ) /\ A C_ ( A vH B ) ) ) |
38 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
39 |
5 1 38
|
chlubi |
|- ( ( R C_ ( A vH B ) /\ A C_ ( A vH B ) ) <-> ( R vH A ) C_ ( A vH B ) ) |
40 |
37 39
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( R vH A ) C_ ( A vH B ) ) |
41 |
|
simprrl |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> C C_ ( A vH B ) ) |
42 |
41
|
adantr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> C C_ ( A vH B ) ) |
43 |
40 42
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH A ) C_ ( A vH B ) /\ C C_ ( A vH B ) ) ) |
44 |
5 1
|
chjcli |
|- ( R vH A ) e. CH |
45 |
44 3 38
|
chlubi |
|- ( ( ( R vH A ) C_ ( A vH B ) /\ C C_ ( A vH B ) ) <-> ( ( R vH A ) vH C ) C_ ( A vH B ) ) |
46 |
43 45
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH A ) vH C ) C_ ( A vH B ) ) |
47 |
1 2 44 3
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( ( R vH A ) i^i C ) /\ ( ( R vH A ) vH C ) C_ ( A vH B ) ) ) -> ( ( ( R vH A ) vH C ) i^i B ) = ( ( ( R vH A ) i^i B ) vH ( C i^i B ) ) ) |
48 |
20 26 46 47
|
syl12anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH A ) vH C ) i^i B ) = ( ( ( R vH A ) i^i B ) vH ( C i^i B ) ) ) |
49 |
|
simplll |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A MH B ) |
50 |
|
simplrl |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A C_ C /\ A C_ D ) ) |
51 |
|
ssin |
|- ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) |
52 |
50 51
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ ( C i^i D ) ) |
53 |
52
|
ssrind |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A i^i B ) C_ ( ( C i^i D ) i^i B ) ) |
54 |
|
inindir |
|- ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) |
55 |
53 54
|
sseqtrdi |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A i^i B ) C_ ( ( C i^i B ) i^i ( D i^i B ) ) ) |
56 |
|
simprl |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( C i^i B ) i^i ( D i^i B ) ) C_ R ) |
57 |
55 56
|
sstrd |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A i^i B ) C_ R ) |
58 |
|
inss2 |
|- ( D i^i B ) C_ B |
59 |
|
sstr |
|- ( ( R C_ ( D i^i B ) /\ ( D i^i B ) C_ B ) -> R C_ B ) |
60 |
58 59
|
mpan2 |
|- ( R C_ ( D i^i B ) -> R C_ B ) |
61 |
60
|
ad2antll |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> R C_ B ) |
62 |
1 2 5
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ R e. CH ) |
63 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ R e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ R /\ R C_ B ) ) -> ( ( R vH A ) i^i B ) = R ) |
64 |
62 63
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ R /\ R C_ B ) -> ( ( R vH A ) i^i B ) = R ) |
65 |
49 57 61 64
|
syl3anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH A ) i^i B ) = R ) |
66 |
65
|
oveq1d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH A ) i^i B ) vH ( C i^i B ) ) = ( R vH ( C i^i B ) ) ) |
67 |
48 66
|
eqtr2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( R vH ( C i^i B ) ) = ( ( ( R vH A ) vH C ) i^i B ) ) |
68 |
67
|
ineq1d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( ( R vH A ) vH C ) i^i B ) i^i ( D i^i B ) ) ) |
69 |
|
inindir |
|- ( ( ( ( R vH A ) vH C ) i^i D ) i^i B ) = ( ( ( ( R vH A ) vH C ) i^i B ) i^i ( D i^i B ) ) |
70 |
68 69
|
eqtr4di |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( ( R vH A ) vH C ) i^i D ) i^i B ) ) |
71 |
52 23
|
jctil |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A C_ ( R vH A ) /\ A C_ ( C i^i D ) ) ) |
72 |
|
ssin |
|- ( ( A C_ ( R vH A ) /\ A C_ ( C i^i D ) ) <-> A C_ ( ( R vH A ) i^i ( C i^i D ) ) ) |
73 |
71 72
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ ( ( R vH A ) i^i ( C i^i D ) ) ) |
74 |
|
ssinss1 |
|- ( C C_ ( A vH B ) -> ( C i^i D ) C_ ( A vH B ) ) |
75 |
74
|
ad2antrl |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
76 |
75
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
77 |
40 76
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH A ) C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) |
78 |
3 4
|
chincli |
|- ( C i^i D ) e. CH |
79 |
44 78 38
|
chlubi |
|- ( ( ( R vH A ) C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) <-> ( ( R vH A ) vH ( C i^i D ) ) C_ ( A vH B ) ) |
80 |
77 79
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( R vH A ) vH ( C i^i D ) ) C_ ( A vH B ) ) |
81 |
1 2 44 78
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( ( R vH A ) i^i ( C i^i D ) ) /\ ( ( R vH A ) vH ( C i^i D ) ) C_ ( A vH B ) ) ) -> ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) = ( ( ( R vH A ) i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
82 |
20 73 80 81
|
syl12anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) = ( ( ( R vH A ) i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
83 |
54
|
a1i |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) ) |
84 |
65 83
|
oveq12d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH A ) i^i B ) vH ( ( C i^i D ) i^i B ) ) = ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) |
85 |
82 84
|
eqtr2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) ) |
86 |
70 85
|
sseq12d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( ( R vH A ) vH C ) i^i D ) i^i B ) C_ ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) ) ) |
87 |
|
simpllr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> B MH* A ) |
88 |
|
simplr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ D ) |
89 |
88
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ D ) |
90 |
44 3
|
chub1i |
|- ( R vH A ) C_ ( ( R vH A ) vH C ) |
91 |
23 90
|
sstri |
|- A C_ ( ( R vH A ) vH C ) |
92 |
89 91
|
jctil |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A C_ ( ( R vH A ) vH C ) /\ A C_ D ) ) |
93 |
|
ssin |
|- ( ( A C_ ( ( R vH A ) vH C ) /\ A C_ D ) <-> A C_ ( ( ( R vH A ) vH C ) i^i D ) ) |
94 |
92 93
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ ( ( ( R vH A ) vH C ) i^i D ) ) |
95 |
44 78
|
chub1i |
|- ( R vH A ) C_ ( ( R vH A ) vH ( C i^i D ) ) |
96 |
23 95
|
sstri |
|- A C_ ( ( R vH A ) vH ( C i^i D ) ) |
97 |
94 96
|
jctir |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( A C_ ( ( ( R vH A ) vH C ) i^i D ) /\ A C_ ( ( R vH A ) vH ( C i^i D ) ) ) ) |
98 |
|
ssin |
|- ( ( A C_ ( ( ( R vH A ) vH C ) i^i D ) /\ A C_ ( ( R vH A ) vH ( C i^i D ) ) ) <-> A C_ ( ( ( ( R vH A ) vH C ) i^i D ) i^i ( ( R vH A ) vH ( C i^i D ) ) ) ) |
99 |
97 98
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> A C_ ( ( ( ( R vH A ) vH C ) i^i D ) i^i ( ( R vH A ) vH ( C i^i D ) ) ) ) |
100 |
|
inss2 |
|- ( ( ( R vH A ) vH C ) i^i D ) C_ D |
101 |
|
sstr |
|- ( ( ( ( ( R vH A ) vH C ) i^i D ) C_ D /\ D C_ ( A vH B ) ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) ) |
102 |
100 101
|
mpan |
|- ( D C_ ( A vH B ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) ) |
103 |
102
|
ad2antll |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) ) |
104 |
103
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) ) |
105 |
104 80
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) /\ ( ( R vH A ) vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
106 |
44 3
|
chjcli |
|- ( ( R vH A ) vH C ) e. CH |
107 |
106 4
|
chincli |
|- ( ( ( R vH A ) vH C ) i^i D ) e. CH |
108 |
44 78
|
chjcli |
|- ( ( R vH A ) vH ( C i^i D ) ) e. CH |
109 |
107 108 38
|
chlubi |
|- ( ( ( ( ( R vH A ) vH C ) i^i D ) C_ ( A vH B ) /\ ( ( R vH A ) vH ( C i^i D ) ) C_ ( A vH B ) ) <-> ( ( ( ( R vH A ) vH C ) i^i D ) vH ( ( R vH A ) vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
110 |
105 109
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( ( R vH A ) vH C ) i^i D ) vH ( ( R vH A ) vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
111 |
1 2 107 108
|
mdslle1i |
|- ( ( B MH* A /\ A C_ ( ( ( ( R vH A ) vH C ) i^i D ) i^i ( ( R vH A ) vH ( C i^i D ) ) ) /\ ( ( ( ( R vH A ) vH C ) i^i D ) vH ( ( R vH A ) vH ( C i^i D ) ) ) C_ ( A vH B ) ) -> ( ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) <-> ( ( ( ( R vH A ) vH C ) i^i D ) i^i B ) C_ ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) ) ) |
112 |
87 99 110 111
|
syl3anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) <-> ( ( ( ( R vH A ) vH C ) i^i D ) i^i B ) C_ ( ( ( R vH A ) vH ( C i^i D ) ) i^i B ) ) ) |
113 |
86 112
|
bitr4d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) ) -> ( ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) ) ) |
114 |
113
|
exbiri |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) -> ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
115 |
114
|
a2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
116 |
19 115
|
syld |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( R vH A ) C_ D -> ( ( ( R vH A ) vH C ) i^i D ) C_ ( ( R vH A ) vH ( C i^i D ) ) ) -> ( ( ( ( C i^i B ) i^i ( D i^i B ) ) C_ R /\ R C_ ( D i^i B ) ) -> ( ( R vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( R vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |