Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
|- A e. CH |
2 |
|
mdslmd.2 |
|- B e. CH |
3 |
|
mdslmd.3 |
|- C e. CH |
4 |
|
mdslmd.4 |
|- D e. CH |
5 |
|
mdslmd1lem.5 |
|- R e. CH |
6 |
|
ssrin |
|- ( R C_ D -> ( R i^i B ) C_ ( D i^i B ) ) |
7 |
6
|
adantl |
|- ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( R i^i B ) C_ ( D i^i B ) ) |
8 |
7
|
imim1i |
|- ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
9 |
|
simpllr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> B MH* A ) |
10 |
3 5
|
chub2i |
|- C C_ ( R vH C ) |
11 |
|
sstr |
|- ( ( A C_ C /\ C C_ ( R vH C ) ) -> A C_ ( R vH C ) ) |
12 |
10 11
|
mpan2 |
|- ( A C_ C -> A C_ ( R vH C ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH C ) ) |
14 |
13
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH C ) ) |
15 |
|
simplr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ D ) |
16 |
15
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ D ) |
17 |
14 16
|
ssind |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( R vH C ) i^i D ) ) |
18 |
|
ssin |
|- ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) |
19 |
3 4
|
chincli |
|- ( C i^i D ) e. CH |
20 |
19 5
|
chub2i |
|- ( C i^i D ) C_ ( R vH ( C i^i D ) ) |
21 |
|
sstr |
|- ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ ( R vH ( C i^i D ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
22 |
20 21
|
mpan2 |
|- ( A C_ ( C i^i D ) -> A C_ ( R vH ( C i^i D ) ) ) |
23 |
18 22
|
sylbi |
|- ( ( A C_ C /\ A C_ D ) -> A C_ ( R vH ( C i^i D ) ) ) |
24 |
23
|
adantr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
25 |
24
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
26 |
17 25
|
ssind |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) ) |
27 |
|
inss2 |
|- ( ( R vH C ) i^i D ) C_ D |
28 |
|
sstr |
|- ( ( ( ( R vH C ) i^i D ) C_ D /\ D C_ ( A vH B ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
29 |
27 28
|
mpan |
|- ( D C_ ( A vH B ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
30 |
29
|
ad2antll |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
31 |
30
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
32 |
|
sstr |
|- ( ( R C_ D /\ D C_ ( A vH B ) ) -> R C_ ( A vH B ) ) |
33 |
32
|
ancoms |
|- ( ( D C_ ( A vH B ) /\ R C_ D ) -> R C_ ( A vH B ) ) |
34 |
33
|
ad2ant2l |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
35 |
34
|
adantll |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
36 |
35
|
adantll |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
37 |
|
ssinss1 |
|- ( C C_ ( A vH B ) -> ( C i^i D ) C_ ( A vH B ) ) |
38 |
37
|
ad2antrl |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
39 |
38
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
40 |
36 39
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) |
41 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
42 |
5 19 41
|
chlubi |
|- ( ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) <-> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
43 |
40 42
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
44 |
31 43
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
45 |
5 3
|
chjcli |
|- ( R vH C ) e. CH |
46 |
45 4
|
chincli |
|- ( ( R vH C ) i^i D ) e. CH |
47 |
5 19
|
chjcli |
|- ( R vH ( C i^i D ) ) e. CH |
48 |
46 47 41
|
chlubi |
|- ( ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) <-> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
49 |
44 48
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
50 |
1 2 46 47
|
mdslle1i |
|- ( ( B MH* A /\ A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) /\ ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
51 |
9 26 49 50
|
syl3anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
52 |
|
inindir |
|- ( ( ( R vH C ) i^i D ) i^i B ) = ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) |
53 |
|
sstr |
|- ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) |
54 |
18 53
|
sylanb |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) |
55 |
54
|
ad2ant2r |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ R ) |
56 |
|
simplll |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ C ) |
57 |
55 56
|
ssind |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R i^i C ) ) |
58 |
|
simplrl |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> C C_ ( A vH B ) ) |
59 |
35 58
|
jca |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) ) |
60 |
5 3 41
|
chlubi |
|- ( ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) <-> ( R vH C ) C_ ( A vH B ) ) |
61 |
59 60
|
sylib |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH C ) C_ ( A vH B ) ) |
62 |
57 61
|
jca |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) |
63 |
1 2 5 3
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
64 |
62 63
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
65 |
64
|
anassrs |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
66 |
65
|
ineq1d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) = ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) |
67 |
52 66
|
eqtr2id |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( R vH C ) i^i D ) i^i B ) ) |
68 |
18
|
biimpi |
|- ( ( A C_ C /\ A C_ D ) -> A C_ ( C i^i D ) ) |
69 |
68
|
adantr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( C i^i D ) ) |
70 |
54 69
|
ssind |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( R i^i ( C i^i D ) ) ) |
71 |
33
|
adantll |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> R C_ ( A vH B ) ) |
72 |
37
|
ad2antrr |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( C i^i D ) C_ ( A vH B ) ) |
73 |
71 72
|
jca |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) |
74 |
73 42
|
sylib |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
75 |
70 74
|
anim12i |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) /\ ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
76 |
75
|
an4s |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
77 |
1 2 5 19
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
78 |
76 77
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
79 |
78
|
anassrs |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
80 |
|
inindir |
|- ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) |
81 |
80
|
a1i |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) ) |
82 |
81
|
oveq2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) = ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) |
83 |
79 82
|
eqtr2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( R vH ( C i^i D ) ) i^i B ) ) |
84 |
67 83
|
sseq12d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
85 |
51 84
|
bitr4d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
86 |
85
|
exbiri |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |
87 |
86
|
a2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |
88 |
8 87
|
syl5 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |