| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
|- A e. CH |
| 2 |
|
mdslmd.2 |
|- B e. CH |
| 3 |
|
mdslmd.3 |
|- C e. CH |
| 4 |
|
mdslmd.4 |
|- D e. CH |
| 5 |
|
mdslmd1lem.5 |
|- R e. CH |
| 6 |
|
ssrin |
|- ( R C_ D -> ( R i^i B ) C_ ( D i^i B ) ) |
| 7 |
6
|
adantl |
|- ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( R i^i B ) C_ ( D i^i B ) ) |
| 8 |
7
|
imim1i |
|- ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
| 9 |
|
simpllr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> B MH* A ) |
| 10 |
3 5
|
chub2i |
|- C C_ ( R vH C ) |
| 11 |
|
sstr |
|- ( ( A C_ C /\ C C_ ( R vH C ) ) -> A C_ ( R vH C ) ) |
| 12 |
10 11
|
mpan2 |
|- ( A C_ C -> A C_ ( R vH C ) ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH C ) ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH C ) ) |
| 15 |
|
simplr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ D ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ D ) |
| 17 |
14 16
|
ssind |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( R vH C ) i^i D ) ) |
| 18 |
|
ssin |
|- ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) |
| 19 |
3 4
|
chincli |
|- ( C i^i D ) e. CH |
| 20 |
19 5
|
chub2i |
|- ( C i^i D ) C_ ( R vH ( C i^i D ) ) |
| 21 |
|
sstr |
|- ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ ( R vH ( C i^i D ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
| 22 |
20 21
|
mpan2 |
|- ( A C_ ( C i^i D ) -> A C_ ( R vH ( C i^i D ) ) ) |
| 23 |
18 22
|
sylbi |
|- ( ( A C_ C /\ A C_ D ) -> A C_ ( R vH ( C i^i D ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH ( C i^i D ) ) ) |
| 26 |
17 25
|
ssind |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) ) |
| 27 |
|
inss2 |
|- ( ( R vH C ) i^i D ) C_ D |
| 28 |
|
sstr |
|- ( ( ( ( R vH C ) i^i D ) C_ D /\ D C_ ( A vH B ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
| 29 |
27 28
|
mpan |
|- ( D C_ ( A vH B ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
| 30 |
29
|
ad2antll |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
| 31 |
30
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) |
| 32 |
|
sstr |
|- ( ( R C_ D /\ D C_ ( A vH B ) ) -> R C_ ( A vH B ) ) |
| 33 |
32
|
ancoms |
|- ( ( D C_ ( A vH B ) /\ R C_ D ) -> R C_ ( A vH B ) ) |
| 34 |
33
|
ad2ant2l |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
| 35 |
34
|
adantll |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
| 36 |
35
|
adantll |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) |
| 37 |
|
ssinss1 |
|- ( C C_ ( A vH B ) -> ( C i^i D ) C_ ( A vH B ) ) |
| 38 |
37
|
ad2antrl |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
| 39 |
38
|
ad2antlr |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( C i^i D ) C_ ( A vH B ) ) |
| 40 |
36 39
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) |
| 41 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 42 |
5 19 41
|
chlubi |
|- ( ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) <-> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
| 43 |
40 42
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
| 44 |
31 43
|
jca |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
| 45 |
5 3
|
chjcli |
|- ( R vH C ) e. CH |
| 46 |
45 4
|
chincli |
|- ( ( R vH C ) i^i D ) e. CH |
| 47 |
5 19
|
chjcli |
|- ( R vH ( C i^i D ) ) e. CH |
| 48 |
46 47 41
|
chlubi |
|- ( ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) <-> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
| 49 |
44 48
|
sylib |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) |
| 50 |
1 2 46 47
|
mdslle1i |
|- ( ( B MH* A /\ A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) /\ ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
| 51 |
9 26 49 50
|
syl3anc |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
| 52 |
|
inindir |
|- ( ( ( R vH C ) i^i D ) i^i B ) = ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) |
| 53 |
|
sstr |
|- ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) |
| 54 |
18 53
|
sylanb |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) |
| 55 |
54
|
ad2ant2r |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ R ) |
| 56 |
|
simplll |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ C ) |
| 57 |
55 56
|
ssind |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R i^i C ) ) |
| 58 |
|
simplrl |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> C C_ ( A vH B ) ) |
| 59 |
35 58
|
jca |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) ) |
| 60 |
5 3 41
|
chlubi |
|- ( ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) <-> ( R vH C ) C_ ( A vH B ) ) |
| 61 |
59 60
|
sylib |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH C ) C_ ( A vH B ) ) |
| 62 |
57 61
|
jca |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) |
| 63 |
1 2 5 3
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
| 64 |
62 63
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
| 65 |
64
|
anassrs |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) |
| 66 |
65
|
ineq1d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) = ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) |
| 67 |
52 66
|
eqtr2id |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( R vH C ) i^i D ) i^i B ) ) |
| 68 |
18
|
biimpi |
|- ( ( A C_ C /\ A C_ D ) -> A C_ ( C i^i D ) ) |
| 69 |
68
|
adantr |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( C i^i D ) ) |
| 70 |
54 69
|
ssind |
|- ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( R i^i ( C i^i D ) ) ) |
| 71 |
33
|
adantll |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> R C_ ( A vH B ) ) |
| 72 |
37
|
ad2antrr |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( C i^i D ) C_ ( A vH B ) ) |
| 73 |
71 72
|
jca |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) |
| 74 |
73 42
|
sylib |
|- ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) |
| 75 |
70 74
|
anim12i |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) /\ ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
| 76 |
75
|
an4s |
|- ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) |
| 77 |
1 2 5 19
|
mdslj1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
| 78 |
76 77
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
| 79 |
78
|
anassrs |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) |
| 80 |
|
inindir |
|- ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) |
| 81 |
80
|
a1i |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) = ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) |
| 83 |
79 82
|
eqtr2d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( R vH ( C i^i D ) ) i^i B ) ) |
| 84 |
67 83
|
sseq12d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) |
| 85 |
51 84
|
bitr4d |
|- ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
| 86 |
85
|
exbiri |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |
| 87 |
86
|
a2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |
| 88 |
8 87
|
syl5 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |