Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
|- A e. CH |
2 |
|
mdslmd.2 |
|- B e. CH |
3 |
|
mdslmd.3 |
|- C e. CH |
4 |
|
mdslmd.4 |
|- D e. CH |
5 |
|
ineq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x i^i B ) = ( if ( x e. CH , x , 0H ) i^i B ) ) |
6 |
5
|
sseq1d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) C_ ( D i^i B ) <-> ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) ) ) |
7 |
5
|
oveq1d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) vH ( C i^i B ) ) = ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) ) |
8 |
7
|
ineq1d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) |
9 |
5
|
oveq1d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) |
10 |
8 9
|
sseq12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) |
11 |
6 10
|
imbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) <-> ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) |
12 |
|
sseq2 |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( C i^i D ) C_ x <-> ( C i^i D ) C_ if ( x e. CH , x , 0H ) ) ) |
13 |
|
sseq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x C_ D <-> if ( x e. CH , x , 0H ) C_ D ) ) |
14 |
12 13
|
anbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) <-> ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) ) ) |
15 |
|
oveq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x vH C ) = ( if ( x e. CH , x , 0H ) vH C ) ) |
16 |
15
|
ineq1d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( x vH C ) i^i D ) = ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) ) |
17 |
|
oveq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x vH ( C i^i D ) ) = ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) |
18 |
16 17
|
sseq12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) <-> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) |
19 |
14 18
|
imbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) <-> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) |
20 |
11 19
|
imbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) <-> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) ) |
21 |
20
|
imbi2d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) <-> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) ) ) |
22 |
|
h0elch |
|- 0H e. CH |
23 |
22
|
elimel |
|- if ( x e. CH , x , 0H ) e. CH |
24 |
1 2 3 4 23
|
mdslmd1lem2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) |
25 |
21 24
|
dedth |
|- ( x e. CH -> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) ) |
26 |
25
|
imp |
|- ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |