Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
|- A e. CH |
2 |
|
mdslmd.2 |
|- B e. CH |
3 |
|
mdslmd.3 |
|- C e. CH |
4 |
|
mdslmd.4 |
|- D e. CH |
5 |
3 4
|
chjcli |
|- ( C vH D ) e. CH |
6 |
5 2 1
|
chlej1i |
|- ( ( C vH D ) C_ B -> ( ( C vH D ) vH A ) C_ ( B vH A ) ) |
7 |
3 4 1
|
chjjdiri |
|- ( ( C vH D ) vH A ) = ( ( C vH A ) vH ( D vH A ) ) |
8 |
2 1
|
chjcomi |
|- ( B vH A ) = ( A vH B ) |
9 |
6 7 8
|
3sstr3g |
|- ( ( C vH D ) C_ B -> ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) |
10 |
9
|
adantl |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) |
11 |
1 3
|
chub2i |
|- A C_ ( C vH A ) |
12 |
1 4
|
chub2i |
|- A C_ ( D vH A ) |
13 |
11 12
|
ssini |
|- A C_ ( ( C vH A ) i^i ( D vH A ) ) |
14 |
10 13
|
jctil |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) ) |
15 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
16 |
4 1
|
chjcli |
|- ( D vH A ) e. CH |
17 |
1 2 15 16
|
mdslmd1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) ) -> ( ( C vH A ) MH ( D vH A ) <-> ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) ) ) |
18 |
14 17
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( C vH A ) MH ( D vH A ) <-> ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) ) ) |
19 |
|
id |
|- ( A MH B -> A MH B ) |
20 |
|
inss1 |
|- ( C i^i D ) C_ C |
21 |
|
sstr |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C i^i D ) C_ C ) -> ( A i^i B ) C_ C ) |
22 |
20 21
|
mpan2 |
|- ( ( A i^i B ) C_ ( C i^i D ) -> ( A i^i B ) C_ C ) |
23 |
3 4
|
chub1i |
|- C C_ ( C vH D ) |
24 |
|
sstr |
|- ( ( C C_ ( C vH D ) /\ ( C vH D ) C_ B ) -> C C_ B ) |
25 |
23 24
|
mpan |
|- ( ( C vH D ) C_ B -> C C_ B ) |
26 |
1 2 3
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ C e. CH ) |
27 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = C ) |
28 |
26 27
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) -> ( ( C vH A ) i^i B ) = C ) |
29 |
19 22 25 28
|
syl3an |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( C vH A ) i^i B ) = C ) |
30 |
|
inss2 |
|- ( C i^i D ) C_ D |
31 |
|
sstr |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C i^i D ) C_ D ) -> ( A i^i B ) C_ D ) |
32 |
30 31
|
mpan2 |
|- ( ( A i^i B ) C_ ( C i^i D ) -> ( A i^i B ) C_ D ) |
33 |
4 3
|
chub2i |
|- D C_ ( C vH D ) |
34 |
|
sstr |
|- ( ( D C_ ( C vH D ) /\ ( C vH D ) C_ B ) -> D C_ B ) |
35 |
33 34
|
mpan |
|- ( ( C vH D ) C_ B -> D C_ B ) |
36 |
1 2 4
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ D e. CH ) |
37 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ D e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) ) -> ( ( D vH A ) i^i B ) = D ) |
38 |
36 37
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) -> ( ( D vH A ) i^i B ) = D ) |
39 |
19 32 35 38
|
syl3an |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( D vH A ) i^i B ) = D ) |
40 |
29 39
|
breq12d |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
41 |
40
|
3expb |
|- ( ( A MH B /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
42 |
41
|
adantlr |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
43 |
18 42
|
bitr2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( C MH D <-> ( C vH A ) MH ( D vH A ) ) ) |