| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m.b |
|- B = ( Base ` K ) |
| 2 |
|
m.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
m.z |
|- .0. = ( 0. ` K ) |
| 4 |
|
m.a |
|- A = ( Atoms ` K ) |
| 5 |
1 2 3 4
|
meetat |
|- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) |
| 6 |
|
eleq1a |
|- ( P e. A -> ( ( X ./\ P ) = P -> ( X ./\ P ) e. A ) ) |
| 7 |
6
|
3ad2ant3 |
|- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P -> ( X ./\ P ) e. A ) ) |
| 8 |
7
|
orim1d |
|- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = .0. ) ) ) |
| 9 |
5 8
|
mpd |
|- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) e. A \/ ( X ./\ P ) = .0. ) ) |