Metamath Proof Explorer


Theorem meetcl

Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetcl.b
|- B = ( Base ` K )
meetcl.m
|- ./\ = ( meet ` K )
meetcl.k
|- ( ph -> K e. V )
meetcl.x
|- ( ph -> X e. B )
meetcl.y
|- ( ph -> Y e. B )
meetcl.e
|- ( ph -> <. X , Y >. e. dom ./\ )
Assertion meetcl
|- ( ph -> ( X ./\ Y ) e. B )

Proof

Step Hyp Ref Expression
1 meetcl.b
 |-  B = ( Base ` K )
2 meetcl.m
 |-  ./\ = ( meet ` K )
3 meetcl.k
 |-  ( ph -> K e. V )
4 meetcl.x
 |-  ( ph -> X e. B )
5 meetcl.y
 |-  ( ph -> Y e. B )
6 meetcl.e
 |-  ( ph -> <. X , Y >. e. dom ./\ )
7 eqid
 |-  ( glb ` K ) = ( glb ` K )
8 7 2 3 4 5 meetval
 |-  ( ph -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) )
9 7 2 3 4 5 meetdef
 |-  ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom ( glb ` K ) ) )
10 6 9 mpbid
 |-  ( ph -> { X , Y } e. dom ( glb ` K ) )
11 1 7 3 10 glbcl
 |-  ( ph -> ( ( glb ` K ) ` { X , Y } ) e. B )
12 8 11 eqeltrd
 |-  ( ph -> ( X ./\ Y ) e. B )