| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meetcl.b |
|- B = ( Base ` K ) |
| 2 |
|
meetcl.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
meetcl.k |
|- ( ph -> K e. V ) |
| 4 |
|
meetcl.x |
|- ( ph -> X e. B ) |
| 5 |
|
meetcl.y |
|- ( ph -> Y e. B ) |
| 6 |
|
meetcl.e |
|- ( ph -> <. X , Y >. e. dom ./\ ) |
| 7 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
| 8 |
7 2 3 4 5
|
meetval |
|- ( ph -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) |
| 9 |
7 2 3 4 5
|
meetdef |
|- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom ( glb ` K ) ) ) |
| 10 |
6 9
|
mpbid |
|- ( ph -> { X , Y } e. dom ( glb ` K ) ) |
| 11 |
1 7 3 10
|
glbcl |
|- ( ph -> ( ( glb ` K ) ` { X , Y } ) e. B ) |
| 12 |
8 11
|
eqeltrd |
|- ( ph -> ( X ./\ Y ) e. B ) |