| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetcom.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | meetcom.m |  |-  ./\ = ( meet ` K ) | 
						
							| 3 |  | prcom |  |-  { Y , X } = { X , Y } | 
						
							| 4 | 3 | fveq2i |  |-  ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) | 
						
							| 5 | 4 | a1i |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) ) | 
						
							| 6 |  | eqid |  |-  ( glb ` K ) = ( glb ` K ) | 
						
							| 7 |  | simp1 |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> K e. V ) | 
						
							| 8 |  | simp3 |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> Y e. B ) | 
						
							| 9 |  | simp2 |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> X e. B ) | 
						
							| 10 | 6 2 7 8 9 | meetval |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( Y ./\ X ) = ( ( glb ` K ) ` { Y , X } ) ) | 
						
							| 11 | 6 2 7 9 8 | meetval |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) | 
						
							| 12 | 5 10 11 | 3eqtr4rd |  |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |