Step |
Hyp |
Ref |
Expression |
1 |
|
meetcom.b |
|- B = ( Base ` K ) |
2 |
|
meetcom.m |
|- ./\ = ( meet ` K ) |
3 |
|
prcom |
|- { Y , X } = { X , Y } |
4 |
3
|
fveq2i |
|- ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) |
5 |
4
|
a1i |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) ) |
6 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
7 |
|
simp1 |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> K e. V ) |
8 |
|
simp3 |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> Y e. B ) |
9 |
|
simp2 |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> X e. B ) |
10 |
6 2 7 8 9
|
meetval |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( Y ./\ X ) = ( ( glb ` K ) ` { Y , X } ) ) |
11 |
6 2 7 9 8
|
meetval |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) |
12 |
5 10 11
|
3eqtr4rd |
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |