Step |
Hyp |
Ref |
Expression |
1 |
|
meetdef.u |
|- G = ( glb ` K ) |
2 |
|
meetdef.m |
|- ./\ = ( meet ` K ) |
3 |
|
meetdef.k |
|- ( ph -> K e. V ) |
4 |
|
meetdef.x |
|- ( ph -> X e. W ) |
5 |
|
meetdef.y |
|- ( ph -> Y e. Z ) |
6 |
1 2
|
meetdm |
|- ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom G } ) |
7 |
6
|
eleq2d |
|- ( K e. V -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) ) |
9 |
|
preq1 |
|- ( x = X -> { x , y } = { X , y } ) |
10 |
9
|
eleq1d |
|- ( x = X -> ( { x , y } e. dom G <-> { X , y } e. dom G ) ) |
11 |
|
preq2 |
|- ( y = Y -> { X , y } = { X , Y } ) |
12 |
11
|
eleq1d |
|- ( y = Y -> ( { X , y } e. dom G <-> { X , Y } e. dom G ) ) |
13 |
10 12
|
opelopabg |
|- ( ( X e. W /\ Y e. Z ) -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) ) |
14 |
4 5 13
|
syl2anc |
|- ( ph -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) ) |
15 |
8 14
|
bitrd |
|- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) |