Metamath Proof Explorer


Theorem meetdef

Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypotheses meetdef.u
|- G = ( glb ` K )
meetdef.m
|- ./\ = ( meet ` K )
meetdef.k
|- ( ph -> K e. V )
meetdef.x
|- ( ph -> X e. W )
meetdef.y
|- ( ph -> Y e. Z )
Assertion meetdef
|- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) )

Proof

Step Hyp Ref Expression
1 meetdef.u
 |-  G = ( glb ` K )
2 meetdef.m
 |-  ./\ = ( meet ` K )
3 meetdef.k
 |-  ( ph -> K e. V )
4 meetdef.x
 |-  ( ph -> X e. W )
5 meetdef.y
 |-  ( ph -> Y e. Z )
6 1 2 meetdm
 |-  ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom G } )
7 6 eleq2d
 |-  ( K e. V -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) )
8 3 7 syl
 |-  ( ph -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) )
9 preq1
 |-  ( x = X -> { x , y } = { X , y } )
10 9 eleq1d
 |-  ( x = X -> ( { x , y } e. dom G <-> { X , y } e. dom G ) )
11 preq2
 |-  ( y = Y -> { X , y } = { X , Y } )
12 11 eleq1d
 |-  ( y = Y -> ( { X , y } e. dom G <-> { X , Y } e. dom G ) )
13 10 12 opelopabg
 |-  ( ( X e. W /\ Y e. Z ) -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) )
14 4 5 13 syl2anc
 |-  ( ph -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) )
15 8 14 bitrd
 |-  ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) )