Step |
Hyp |
Ref |
Expression |
1 |
|
meetfval.u |
|- G = ( glb ` K ) |
2 |
|
meetfval.m |
|- ./\ = ( meet ` K ) |
3 |
|
elex |
|- ( K e. V -> K e. _V ) |
4 |
|
fvex |
|- ( Base ` K ) e. _V |
5 |
|
moeq |
|- E* z z = ( G ` { x , y } ) |
6 |
5
|
a1i |
|- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> E* z z = ( G ` { x , y } ) ) |
7 |
|
eqid |
|- { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } |
8 |
4 4 6 7
|
oprabex |
|- { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } e. _V |
9 |
8
|
a1i |
|- ( K e. _V -> { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } e. _V ) |
10 |
1
|
glbfun |
|- Fun G |
11 |
|
funbrfv2b |
|- ( Fun G -> ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) ) |
12 |
10 11
|
ax-mp |
|- ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
15 |
|
simpl |
|- ( ( K e. _V /\ { x , y } e. dom G ) -> K e. _V ) |
16 |
|
simpr |
|- ( ( K e. _V /\ { x , y } e. dom G ) -> { x , y } e. dom G ) |
17 |
13 14 1 15 16
|
glbelss |
|- ( ( K e. _V /\ { x , y } e. dom G ) -> { x , y } C_ ( Base ` K ) ) |
18 |
17
|
ex |
|- ( K e. _V -> ( { x , y } e. dom G -> { x , y } C_ ( Base ` K ) ) ) |
19 |
|
vex |
|- x e. _V |
20 |
|
vex |
|- y e. _V |
21 |
19 20
|
prss |
|- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) <-> { x , y } C_ ( Base ` K ) ) |
22 |
18 21
|
syl6ibr |
|- ( K e. _V -> ( { x , y } e. dom G -> ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) ) |
23 |
|
eqcom |
|- ( ( G ` { x , y } ) = z <-> z = ( G ` { x , y } ) ) |
24 |
23
|
biimpi |
|- ( ( G ` { x , y } ) = z -> z = ( G ` { x , y } ) ) |
25 |
22 24
|
anim12d1 |
|- ( K e. _V -> ( ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
26 |
12 25
|
syl5bi |
|- ( K e. _V -> ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
27 |
26
|
alrimiv |
|- ( K e. _V -> A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
28 |
27
|
alrimiv |
|- ( K e. _V -> A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
29 |
28
|
alrimiv |
|- ( K e. _V -> A. x A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
30 |
|
ssoprab2 |
|- ( A. x A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) -> { <. <. x , y >. , z >. | { x , y } G z } C_ { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } ) |
31 |
29 30
|
syl |
|- ( K e. _V -> { <. <. x , y >. , z >. | { x , y } G z } C_ { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } ) |
32 |
9 31
|
ssexd |
|- ( K e. _V -> { <. <. x , y >. , z >. | { x , y } G z } e. _V ) |
33 |
|
fveq2 |
|- ( p = K -> ( glb ` p ) = ( glb ` K ) ) |
34 |
33 1
|
eqtr4di |
|- ( p = K -> ( glb ` p ) = G ) |
35 |
34
|
breqd |
|- ( p = K -> ( { x , y } ( glb ` p ) z <-> { x , y } G z ) ) |
36 |
35
|
oprabbidv |
|- ( p = K -> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } = { <. <. x , y >. , z >. | { x , y } G z } ) |
37 |
|
df-meet |
|- meet = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } ) |
38 |
36 37
|
fvmptg |
|- ( ( K e. _V /\ { <. <. x , y >. , z >. | { x , y } G z } e. _V ) -> ( meet ` K ) = { <. <. x , y >. , z >. | { x , y } G z } ) |
39 |
32 38
|
mpdan |
|- ( K e. _V -> ( meet ` K ) = { <. <. x , y >. , z >. | { x , y } G z } ) |
40 |
2 39
|
eqtrid |
|- ( K e. _V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |
41 |
3 40
|
syl |
|- ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |