| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetfval.u |  |-  G = ( glb ` K ) | 
						
							| 2 |  | meetfval.m |  |-  ./\ = ( meet ` K ) | 
						
							| 3 | 1 2 | meetfval |  |-  ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) | 
						
							| 4 | 1 | glbfun |  |-  Fun G | 
						
							| 5 |  | funbrfv2b |  |-  ( Fun G -> ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) | 
						
							| 7 |  | eqcom |  |-  ( ( G ` { x , y } ) = z <-> z = ( G ` { x , y } ) ) | 
						
							| 8 | 7 | anbi2i |  |-  ( ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) | 
						
							| 9 | 6 8 | bitri |  |-  ( { x , y } G z <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) | 
						
							| 10 | 9 | oprabbii |  |-  { <. <. x , y >. , z >. | { x , y } G z } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } | 
						
							| 11 | 3 10 | eqtrdi |  |-  ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |