| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meetle.b |
|- B = ( Base ` K ) |
| 2 |
|
meetle.l |
|- .<_ = ( le ` K ) |
| 3 |
|
meetle.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
meetle.k |
|- ( ph -> K e. Poset ) |
| 5 |
|
meetle.x |
|- ( ph -> X e. B ) |
| 6 |
|
meetle.y |
|- ( ph -> Y e. B ) |
| 7 |
|
meetle.z |
|- ( ph -> Z e. B ) |
| 8 |
|
meetle.e |
|- ( ph -> <. X , Y >. e. dom ./\ ) |
| 9 |
|
breq1 |
|- ( z = Z -> ( z .<_ X <-> Z .<_ X ) ) |
| 10 |
|
breq1 |
|- ( z = Z -> ( z .<_ Y <-> Z .<_ Y ) ) |
| 11 |
9 10
|
anbi12d |
|- ( z = Z -> ( ( z .<_ X /\ z .<_ Y ) <-> ( Z .<_ X /\ Z .<_ Y ) ) ) |
| 12 |
|
breq1 |
|- ( z = Z -> ( z .<_ ( X ./\ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |
| 13 |
11 12
|
imbi12d |
|- ( z = Z -> ( ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) <-> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) ) |
| 14 |
1 2 3 4 5 6 8
|
meetlem |
|- ( ph -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) ) |
| 15 |
14
|
simprd |
|- ( ph -> A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) |
| 16 |
13 15 7
|
rspcdva |
|- ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) |
| 17 |
1 2 3 4 5 6 8
|
lemeet1 |
|- ( ph -> ( X ./\ Y ) .<_ X ) |
| 18 |
1 3 4 5 6 8
|
meetcl |
|- ( ph -> ( X ./\ Y ) e. B ) |
| 19 |
1 2
|
postr |
|- ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ X e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) |
| 20 |
4 7 18 5 19
|
syl13anc |
|- ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) |
| 21 |
17 20
|
mpan2d |
|- ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ X ) ) |
| 22 |
1 2 3 4 5 6 8
|
lemeet2 |
|- ( ph -> ( X ./\ Y ) .<_ Y ) |
| 23 |
1 2
|
postr |
|- ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ Y e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) |
| 24 |
4 7 18 6 23
|
syl13anc |
|- ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) |
| 25 |
22 24
|
mpan2d |
|- ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ Y ) ) |
| 26 |
21 25
|
jcad |
|- ( ph -> ( Z .<_ ( X ./\ Y ) -> ( Z .<_ X /\ Z .<_ Y ) ) ) |
| 27 |
16 26
|
impbid |
|- ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |