| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetdef.u |  |-  G = ( glb ` K ) | 
						
							| 2 |  | meetdef.m |  |-  ./\ = ( meet ` K ) | 
						
							| 3 |  | meetdef.k |  |-  ( ph -> K e. V ) | 
						
							| 4 |  | meetdef.x |  |-  ( ph -> X e. W ) | 
						
							| 5 |  | meetdef.y |  |-  ( ph -> Y e. Z ) | 
						
							| 6 | 1 2 | meetfval2 |  |-  ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) | 
						
							| 8 | 7 | oveqd |  |-  ( ph -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ { X , Y } e. dom G ) -> { X , Y } e. dom G ) | 
						
							| 11 |  | eqidd |  |-  ( ( ph /\ { X , Y } e. dom G ) -> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) | 
						
							| 12 |  | fvexd |  |-  ( ph -> ( G ` { X , Y } ) e. _V ) | 
						
							| 13 |  | preq12 |  |-  ( ( x = X /\ y = Y ) -> { x , y } = { X , Y } ) | 
						
							| 14 | 13 | eleq1d |  |-  ( ( x = X /\ y = Y ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) | 
						
							| 16 |  | simp3 |  |-  ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> z = ( G ` { X , Y } ) ) | 
						
							| 17 | 13 | fveq2d |  |-  ( ( x = X /\ y = Y ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) | 
						
							| 19 | 16 18 | eqeq12d |  |-  ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( z = ( G ` { x , y } ) <-> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) | 
						
							| 20 | 15 19 | anbi12d |  |-  ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) <-> ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) ) | 
						
							| 21 |  | moeq |  |-  E* z z = ( G ` { x , y } ) | 
						
							| 22 | 21 | moani |  |-  E* z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) | 
						
							| 23 |  | eqid |  |-  { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } | 
						
							| 24 | 20 22 23 | ovigg |  |-  ( ( X e. W /\ Y e. Z /\ ( G ` { X , Y } ) e. _V ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) | 
						
							| 25 | 4 5 12 24 | syl3anc |  |-  ( ph -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ { X , Y } e. dom G ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) | 
						
							| 27 | 10 11 26 | mp2and |  |-  ( ( ph /\ { X , Y } e. dom G ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) | 
						
							| 28 | 9 27 | eqtrd |  |-  ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) | 
						
							| 29 | 1 2 3 4 5 | meetdef |  |-  ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) | 
						
							| 30 | 29 | notbid |  |-  ( ph -> ( -. <. X , Y >. e. dom ./\ <-> -. { X , Y } e. dom G ) ) | 
						
							| 31 |  | df-ov |  |-  ( X ./\ Y ) = ( ./\ ` <. X , Y >. ) | 
						
							| 32 |  | ndmfv |  |-  ( -. <. X , Y >. e. dom ./\ -> ( ./\ ` <. X , Y >. ) = (/) ) | 
						
							| 33 | 31 32 | eqtrid |  |-  ( -. <. X , Y >. e. dom ./\ -> ( X ./\ Y ) = (/) ) | 
						
							| 34 | 30 33 | biimtrrdi |  |-  ( ph -> ( -. { X , Y } e. dom G -> ( X ./\ Y ) = (/) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = (/) ) | 
						
							| 36 |  | ndmfv |  |-  ( -. { X , Y } e. dom G -> ( G ` { X , Y } ) = (/) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ -. { X , Y } e. dom G ) -> ( G ` { X , Y } ) = (/) ) | 
						
							| 38 | 35 37 | eqtr4d |  |-  ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) | 
						
							| 39 | 28 38 | pm2.61dan |  |-  ( ph -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |