Step |
Hyp |
Ref |
Expression |
1 |
|
meetdef.u |
|- G = ( glb ` K ) |
2 |
|
meetdef.m |
|- ./\ = ( meet ` K ) |
3 |
|
meetdef.k |
|- ( ph -> K e. V ) |
4 |
|
meetdef.x |
|- ( ph -> X e. W ) |
5 |
|
meetdef.y |
|- ( ph -> Y e. Z ) |
6 |
1 2
|
meetfval2 |
|- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
7 |
3 6
|
syl |
|- ( ph -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
8 |
7
|
oveqd |
|- ( ph -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) ) |
10 |
|
simpr |
|- ( ( ph /\ { X , Y } e. dom G ) -> { X , Y } e. dom G ) |
11 |
|
eqidd |
|- ( ( ph /\ { X , Y } e. dom G ) -> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) |
12 |
|
fvexd |
|- ( ph -> ( G ` { X , Y } ) e. _V ) |
13 |
|
preq12 |
|- ( ( x = X /\ y = Y ) -> { x , y } = { X , Y } ) |
14 |
13
|
eleq1d |
|- ( ( x = X /\ y = Y ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) |
15 |
14
|
3adant3 |
|- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( { x , y } e. dom G <-> { X , Y } e. dom G ) ) |
16 |
|
simp3 |
|- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> z = ( G ` { X , Y } ) ) |
17 |
13
|
fveq2d |
|- ( ( x = X /\ y = Y ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) |
18 |
17
|
3adant3 |
|- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( G ` { x , y } ) = ( G ` { X , Y } ) ) |
19 |
16 18
|
eqeq12d |
|- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( z = ( G ` { x , y } ) <-> ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) |
20 |
15 19
|
anbi12d |
|- ( ( x = X /\ y = Y /\ z = ( G ` { X , Y } ) ) -> ( ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) <-> ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) ) ) |
21 |
|
moeq |
|- E* z z = ( G ` { x , y } ) |
22 |
21
|
moani |
|- E* z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) |
23 |
|
eqid |
|- { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } |
24 |
20 22 23
|
ovigg |
|- ( ( X e. W /\ Y e. Z /\ ( G ` { X , Y } ) e. _V ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
25 |
4 5 12 24
|
syl3anc |
|- ( ph -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ { X , Y } e. dom G ) -> ( ( { X , Y } e. dom G /\ ( G ` { X , Y } ) = ( G ` { X , Y } ) ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) ) |
27 |
10 11 26
|
mp2and |
|- ( ( ph /\ { X , Y } e. dom G ) -> ( X { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } Y ) = ( G ` { X , Y } ) ) |
28 |
9 27
|
eqtrd |
|- ( ( ph /\ { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |
29 |
1 2 3 4 5
|
meetdef |
|- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) |
30 |
29
|
notbid |
|- ( ph -> ( -. <. X , Y >. e. dom ./\ <-> -. { X , Y } e. dom G ) ) |
31 |
|
df-ov |
|- ( X ./\ Y ) = ( ./\ ` <. X , Y >. ) |
32 |
|
ndmfv |
|- ( -. <. X , Y >. e. dom ./\ -> ( ./\ ` <. X , Y >. ) = (/) ) |
33 |
31 32
|
eqtrid |
|- ( -. <. X , Y >. e. dom ./\ -> ( X ./\ Y ) = (/) ) |
34 |
30 33
|
syl6bir |
|- ( ph -> ( -. { X , Y } e. dom G -> ( X ./\ Y ) = (/) ) ) |
35 |
34
|
imp |
|- ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = (/) ) |
36 |
|
ndmfv |
|- ( -. { X , Y } e. dom G -> ( G ` { X , Y } ) = (/) ) |
37 |
36
|
adantl |
|- ( ( ph /\ -. { X , Y } e. dom G ) -> ( G ` { X , Y } ) = (/) ) |
38 |
35 37
|
eqtr4d |
|- ( ( ph /\ -. { X , Y } e. dom G ) -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |
39 |
28 38
|
pm2.61dan |
|- ( ph -> ( X ./\ Y ) = ( G ` { X , Y } ) ) |